Vol. 85
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2019-09-12
Scatterer Characterization Based on the Condiagonalization of the Sinclair Backscattering Matrix
By
Progress In Electromagnetics Research M, Vol. 85, 59-69, 2019
Abstract
In this paper we revisit the condiagonalization of the Sinclair backscattering matrix, to overcome the Huynen decomposition issues, so as to correctly extract scatterer polarimetric properties. The correct extraction of scatterer polarimetric properties will lead to the correct classification of the scatterer predominant scattering mechanism. Huynen used the congruence transformation by a special unitary matrix to diagonalize the Sinclair matrix into a real and nonnegative diagonal matrix. He also expressed the special unitary matrix in terms of the polarization ellipse parameters and associated them with the scatterer orientation, asymmetry, and skip angle. Unfortunately, this association was found misleading. As a result, it makes the scatterer classification ambiguous, for it is based on the scatterer skip angle and the diagonal matrix. To overcome these ambiguities, we perform the diagonalization procedure founded on the consimilarity transformation by a special unitary matrix, as proposed by Lüneberg. In order to correctly extract the scatterer asymmetry degree and orientation, we express the special unitary matrix in terms of an asymmetry operation and a pure rotation operation. Moreover, we integrate the scatterer skip angle in the diagonal matrix of the consimilarity transformation by having it complex, leading to an unequivocal scatterer characterization.
Citation
Georgios Kouroupis, and Vassilis Anastassopoulos, "Scatterer Characterization Based on the Condiagonalization of the Sinclair Backscattering Matrix," Progress In Electromagnetics Research M, Vol. 85, 59-69, 2019.
doi:10.2528/PIERM19010902
References

1. Lee, J. S. and E. Pottier, Polarimetric Radar Imaging: From Basics to Applications, Taylor & Francis Group, CRC Press, 2009.

2. Lüneburg, E., S. R. Cloude, and W. M. Boerner, "On the proper polarimetric scattering matrix formulation of the forward propagation versus backscattering radar systems description," Proceedings on Geoscience and Remote Sensing, 1997.

3. Bebbington, D. and L. Carrea, "On mathematical and physical principles of transformations of the coherent radar backscatter matrix," IEEE Transactions on Geoscience and Remote Sensing, Vol. 50, No. 11, 4657-4669, November 2012.
doi:10.1109/TGRS.2012.2191294

4. Huynen, J. R., "Physical reality and mathematical process in radar polarimetry," 1991 Seventh International Conference on Antennas and Propagation, ICAP 91 (IEE), Vol. 1, 257-261, York, 1991.

5. Graves, C., "Radar polarization power scattering matrix," Proceedings of the IRE, Vol. 44, No. 2, 248-252, 1956.
doi:10.1109/JRPROC.1956.274912

6. Boerner, W. M., W. L. Yan, A. Q. Xi, and Y. Yamaguchi, "On the basic principles of radar polarimetry: The target characteristic polarization state theory of Kennaugh, Huynen's polarization fork concept, and its extension to the partially polarized case," Proceedings of the IEEE, Vol. 79, No. 10, 1538-1550, 1991.
doi:10.1109/5.104228

7. Cameron, W. L. and H. Rais, "Conservative polarimetric scatterers and their role in incorrect extensions of the Cameron decomposition," IEEE Transactions on Geoscience Remote Sensing, Vol. 44, No. 12, 3506-3516, 2006.
doi:10.1109/TGRS.2006.879115

8. Titin-Schnaider, C., "Comparison between Huynen and Cameron monostatic parameters," Radio Science, Vol. 47, No. 4, 2012.
doi:10.1029/2011RS004876

9. Dallmann, T. and D. Heberling, "On the coneigenvalue decomposition of Sinclair matrices," PIERS Proceedings, 2714-2718, Prague, Czech Republic, July 6-9, 2015.

10. Lüneberg, E., "Radar polarimetry: A revision of basic concepts," Direct and Indirect Methods in Scattering Theory, Gebze, Turkey, 1996.

11. Dallmann, T. and D. Heberling, "On the connection between Jones matrix and Sinclair matrix," PIERS Proceedings, 258-262, Prague, Czech Republic, July 6-9, 2015.

12. Cameron, W. L., N. N. Youssef, and L. K. Leung, "Simulated polarimetric signatures of primitive geometrical shapes," IEEE Transaction on Geoscience Remote Sensing, Vol. 34, No. 3, 793-803, 1996.
doi:10.1109/36.499784

13. Cameron, W. L. and H. Rais, "Derivation of a signed Cameron decomposition asymmetry parameter and relationship of Cameron to Huynen decomposition parameters," IEEE Transactions on Geoscience and Remote Sensing, Vol. 49, No. 5, 1677-1688, 2011.
doi:10.1109/TGRS.2010.2090529

14. Schneider, R., I. Hajnsek, H. Kimura, and J. S. Lee, "Comparison of orientation angle estimation methodes over coherent scatterers," EUSAR 2006 - 6th European Conference on Synthetic Aperture Radar, Dresden, Germany, 2006.

15. Shlivinski, Y. and E. Heyman, "Physical models for polarimetric SAR analysis," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 8, 2664-2672, 2008.
doi:10.1109/TAP.2008.927499

16. Horn, R. A. and C. R. Johnson, Matrix Analysis, 2nd Ed., Cambridge University Press, 2013.

17. Lüneberg, E., "Aspects of radar polarimetry," Turkish Journal of Electrical Engineering & Computer Sciences, Vol. 10, No. 2, 219-243, 2002.