Vol. 164
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2019-03-06
Internal Magnetic Induction Tomography Using a Single Coil
By
Progress In Electromagnetics Research, Vol. 164, 97-107, 2019
Abstract
Most imaging modalities image an object's interior while all instrumentation, including sources and receivers, is externally located. One notable exception is ultra-sound (US), which can be miniaturized sufficiently to locate a US transducer within an object and gather data for image reconstruction. Another is cross-borehole geophysical imaging. The goal of any internal imaging modality is to provide images of greater fldelity while avoiding interfering structures. Due to the bulkiness of multi-coil magnetic induction tomography (MIT), transmitting and receiving coils are never placed within small targets (e.g., a human body). Here, we demonstrate a novel implementation of single-coil MIT that performs a scan all while the coil is located within the interior of a small, lab-created phantom consisting of salt-doped agarose. Phantom geometry is annular, consisting of a 6.0 cm diameter channel of depth 5.5 cm surrounded by a 3.0 cm thick cylindrical wall. A centrally located agarose gel annulus, 2.0 cm thick, is doped with sucient NaCl to elevate its conductivity above that of surrounding agarose. The resulting nearly axisymmetric phantoms consist of material having conductivity ranging from 0.11 to 10.55 S/m. A scan is accomplished robotically, with the coil stub-mounted on the positioning head of a 3-axis controller that positions the planar circular loop coil into 360 or 720 pre-programmed internal positions. Image reconstruction from gathered data is shown to correctly reveal the location, size and conductivity of the approximately axisymmetric inclusion.
Citation
Joe R. Feldkamp, and Stephen Quirk, "Internal Magnetic Induction Tomography Using a Single Coil," Progress In Electromagnetics Research, Vol. 164, 97-107, 2019.
doi:10.2528/PIER18120408
References

1. Borcea, L., "Electrical impedance tomography," Inverse Problems, Vol. 18, R99-R136, 2002.
doi:10.1088/0266-5611/18/6/201

2. Sikora, J., Boundary Element Method for Impedance and Optical Tomography, Oficyna Wydawnicza Politechniki Warszawskiej, 2007.

3. Sikora, J., S. Wojtowicz, and eds., Industrial and Biological Tomography: Theoretical Basis and Applications, Wydawnictwo Ksiazkowe Instytutu Elektrotechniki, 2010.

4. Wei, H. Y. and M. Soleimani, "Electromagnetic tomography for medical and industrial applications: Challenges and opportunities," Proc. IEEE, Vol. 101, 559-564, 2013.
doi:10.1109/JPROC.2012.2237072

5. Stawicki, K. and S. Gratkowski, "Optimization of signal coils in the magnetic induction tomography system," Przeglad Elektrotechniczny, Vol. 86, No. 5, 74-77, 2010.

6. Zakaria, Z., et al., "Advancements in transmitters and sensors for biological tissue imaging in magnetic induction tomography," Sensors, Vol. 12, 7126-7156, 2012.
doi:10.3390/s120607126

7. Al-Zeibak, S. and H. N. Saunders, "A feasibility study of in vivo electromagnetic imaging," Physics in Medicine and Biology, Vol. 38, No. 1, 151-160, 1993.
doi:10.1088/0031-9155/38/1/011

8. Zhdanov, M. S. and K. Yoshioka, "Cross-well electromagnetic imaging in three dimensions," Exploration Geophysics, Vol. 34, 34-40, 2003.
doi:10.1071/EG03034

9. Ma, L., H.-Y. Wei, and M. Soleimani, "Planar magnetic induction tomography for 3D near subsurface imaging," Progress In Electromagnetic Research, Vol. 138, 65-82, 2013.
doi:10.2528/PIER12110711

10. Scharfetter, H., K. Hollaus, J. Rosell-Ferrer, and R. Merwa, "Single-step 3D image reconstruction in magnetic induction tomography: Theoretical limits of spatial resolution and contrast to noise ratio," Annals of Biomedical Engineering, Vol. 34, No. 11, 1786-1798, 2006.
doi:10.1007/s10439-006-9177-6

11. Dekdouk, B., C. Ktistis, D. W. Armitage, and A. J. Peyton, "Absolute imaging of low conductivity material distributions using nonlinear reconstruction methods in magnetic induction tomography," Progress In Electromagnetic Research, Vol. 155, 1-18, 2016.
doi:10.2528/PIER15071705

12. Feldkamp, J. R., "Single-coil magnetic induction tomographic three-dimensional imaging," J. Medical Imaging, Vol. 2, No. 1, 013502, 2015.
doi:10.1117/1.JMI.2.1.013502

13. Feldkamp, J. R. and S. Quirk, "Validation of a convolution integral for conductivity imaging," Progress In Electromagnetic Research Letters, Vol. 67, 1-6, 2017.
doi:10.2528/PIERL17011401

14. Feldkamp, J. R. and S. Quirk, "Coil geometry effects on single-coil magnetic induction tomography," Physics in Medicine and Biology, Vol. 62, 7097-7113, May 2017.
doi:10.1088/1361-6560/aa807b

15. Joines, M. T., Y. Zhang, C. Li, and R. L. Jirtle, "The measured electrical properties of normal and malignant human tissues from 50 to 900 MHz," Medical Physics, Vol. 21, No. 4, 547-550, 1994.
doi:10.1118/1.597312

16. Sudduth, K. A., N. R. Kitchen, W. J. Wiebold, W. D. Batchelor, G. A. Bolero, D. E. Clay, H. L. Palm, F. J. Pierce, R. T. Schuler, and K. D. Thelen, "Relating apparent electrical conductivity to soil properties across the north-central U.S.A.," Computers and Electronics in Agriculture, Vol. 46, 263-283, 2005.
doi:10.1016/j.compag.2004.11.010

17. Palacky, G. J., "Resistivity characteristics of geologic targets (Ch. 3)," Electromagnetic Methods in Applied Geophysics, Vol. 1, 53-129, 1988.

18. Feldkamp, J. R., "Inversion of an inductive loss convolution integral for conductivity imaging," Progress In Electromagnetic Research B, Vol. 74, 93-107, 2017.
doi:10.2528/PIERB17021413

19. Parise, M., "On the surface fields of a small circular loop antenna placed on plane stratified earth," Intl. J. of Antennas and Propagation, Vol. 2015, Article ID 187806, 8 pages, http://dx.doi.org/10.1155/2015/187806, 2015.

20. Gradshteyn, I. S. and Ryzhik, Table of Integrals, Series and Products, Corrected and Enlarged Ed., A. Jeffrey, Academic Press, 1980.

21. Lapidus, L. and G. F. Pinder, Numerical Solution of Partial Differential Equations in Science and Engineering, Wiley-Interscience, J. Wiley & Sons, 1982.

22. Elden, L., "Algorithms for the regularization of ill-conditioned least squares problems," BIT, Vol. 17, 134-145, 1977.
doi:10.1007/BF01932285

23. Donatelli, M., A. Neuman, and L. Reichel, "Square regularization matrices for large linear discrete ill-posed problems," Numerical Linear Algebra with Applications, Vol. 19, 896-913, 2012.
doi:10.1002/nla.1833

24. Katamreddy, S. H. and P. K. Yalavarthy, "Model-resolution based regularization improves near infrared diffuse optical tomography," J. Opt. Soc. Am., Vol. 29, No. 5, 649-656, 2012.
doi:10.1364/JOSAA.29.000649

25. Feldkamp, J. R. and S. Quirk, "Effects of tissue heterogeneity on single-coil, scanning MIT imaging," Proc. SPIE 9783, Medical Imaging: Physics of Medical Imaging, 978359, 2016.

26. Feldkamp, J. R. and S. Quirk, "Optically tracked, single-coil, scanning magnetic induction tomography," J. Medical Imaging, Vol. 4, No. 2, 023504, 2017.
doi:10.1117/1.JMI.4.2.023504

27. Feldkamp, J. R. and S. Quirk, "Optically tracked, single-coil, scanning magnetic induction tomography," Proc. SPIE 10132, Medical Imaging: Physics of Medical Imaging, 10132172, 2017.