1. Koo, B., Y. Na, and S. Hong, "Integrated bias circuits of RF CMOS cascode power amplifier for linearity enhancement," IEEE Trans. Microw. Theory Tech., Vol. 60, 340-351, 2012.
doi:10.1109/TMTT.2011.2177857
2. Joo, T., H. Lee, S. Shim, and S. Hong, "CMOS RF power amplifier for UHF stationary RFID reader," IEEE Microw. Wireless Compon. Lett., Vol. 20, 106-108, 2010.
doi:10.1109/LMWC.2009.2038552
3. Aoki, I., S. D. Kee, D. B. Rutledge, and A. Hajimiri, "Distributed active transformer - A new power-combining and impedance-transformation technique," IEEE Trans. Microw. Theory Tech., Vol. 50, 316-331, 2002.
doi:10.1109/22.981284
4. Lee, O., K.H. An, C.-H. Lee, and J. Laskar, "A Parallel-segmented monolithic step-up transformer," IEEE Microw. Wireless Compon. Lett., Vol. 21, 468-470, 2011.
doi:10.1109/LMWC.2011.2161976
5. Aloui, S., B. Leite, N. Demirel, R. Plana, D. Belot, and E. Kerherve, "High-gain and linear 60-GHz power amplifier with a thin digital 65-nm CMOS technology," IEEE Trans. Microw. Theory Tech., Vol. 61, 2425-2437, 2013.
doi:10.1109/TMTT.2013.2258169
6. Lee, Y. and S. Hong, "A dual-power-mode output matching network for digitally modulated CMOS power amplifier," IEEE Trans. Microw. Theory Tech., Vol. 61, 1570-1579, 2013.
doi:10.1109/TMTT.2013.2246525
7. Park, C., J. Han, H. Kim, and S. Hong, "A 1.8-GHz CMOS power amplifier using a dual-primary transformer with improved efficiency in the low power region," IEEE Trans. Microw. Theory Tech., Vol. 56, 782-792, 2008.
doi:10.1109/TMTT.2008.918152
8. Lee, C., J. Park, and C. Park, "X-band cmos power amplifier using mode-locking method for sensor applications," J. of Electromagn. Waves and Appl., Vol. 26, 633-640, 2012.
doi:10.1080/09205071.2012.710783
9. Francois, B. and P. Reynaert, "A fully integrated watt-level linear 900-MHz CMOS RF power amplifier for LTE-applications," IEEE Trans. Microw. Theory Tech., Vol. 60, 1878-1885, 2012.
doi:10.1109/TMTT.2012.2189411
10. Hwang, H. and C. Park, "Current shared cascade structure for the driver stages of switching mode RF power amplifiers," IEEE Microw. Wireless Compon. Lett., Vol. 23, 605-607, 2013.
doi:10.1109/LMWC.2013.2280634
11. Hwang, H., D. Seo, J. Park, and C. Park, "Investigation of the power transistor size related to the efficiency of switching-mode RF CMOS power amplifiers," Microw. Opt. Technol., Vol. 56, 110-117, 2013.
doi:10.1002/mop.28068
12. Chen, Y.-C., Y.-H. Lin, J.-L. Lin, and H. Wang, "A Ka-band transformer-based doherty power amplifier for multi-Gb/s application in 90-nm CMOS," IEEE Microw. Wireless Compon. Lett., Vol. 28, 1134-1136, 2018.
doi:10.1109/LMWC.2018.2878133
13. Wu, C.-W., Y.-H. Lin, Y.-H. Hsiao, C.-F. Chou, Y.-C. Wu, and H. Wang, "Design of a 60-GHz high-output power stacked-FET power amplifier using transformer-based voltage-type power combining in 65-nm CMOS," IEEE Trans. Microw. Theory Tech., Vol. 66, 4595-4607, 2018.
14. Tsai, J.-H. and J.-W. Wang, "An X-band half-watt CMOS power amplifier using interweaved parallel combining transformer," IEEE Microw. Wireless Compon. Lett., Vol. 27, 491-493, 2017.
doi:10.1109/LMWC.2017.2690878
15. Ahn, H., S. Baek, I. Nam, D. An, J.K. Lee, M. Jeong, B.-E. Kim, J. Choi, and O. Lee, "A fully integrated dual-mode CMOS power amplifier with an autotransformer-based parallel combining transformer," IEEE Microw. Wireless Compon. Lett., Vol. 27, 833-835, 2017.
doi:10.1109/LMWC.2017.2734762