Vol. 78
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2019-01-24
An Asymmetric-Width Broad-Side Coupled Transformer to Reduce the Parasitic Coupling Capacitance for CMOS Power Amplifier Applications
By
Progress In Electromagnetics Research M, Vol. 78, 93-101, 2019
Abstract
In this study, we propose a broad-side coupled transformer with reduced capacitance for RF CMOS power amplifier applications. The width of the secondary winding is decreased to reduce parasitic coupling capacitance. Additionally, an auxiliary primary winding is added to improve the coupling between the primary and secondary windings. To prove feasibility of the proposed transformer, we design the transformer using 180-nm RF CMOS technology. From the simulated results of a typical transformer and the proposed broad-side coupled transformer, we successfully find that the parasitic coupling capacitance of the proposed structure is reduced compared to that of a typical structure. Additionally, the auxiliary primary winding increases the maximum available gain of the proposed transformer.
Citation
Jonghoon Park, Changhyun Lee, and Changkun Park, "An Asymmetric-Width Broad-Side Coupled Transformer to Reduce the Parasitic Coupling Capacitance for CMOS Power Amplifier Applications," Progress In Electromagnetics Research M, Vol. 78, 93-101, 2019.
doi:10.2528/PIERM18112501
References

1. Koo, B., Y. Na, and S. Hong, "Integrated bias circuits of RF CMOS cascode power amplifier for linearity enhancement," IEEE Trans. Microw. Theory Tech., Vol. 60, 340-351, 2012.
doi:10.1109/TMTT.2011.2177857

2. Joo, T., H. Lee, S. Shim, and S. Hong, "CMOS RF power amplifier for UHF stationary RFID reader," IEEE Microw. Wireless Compon. Lett., Vol. 20, 106-108, 2010.
doi:10.1109/LMWC.2009.2038552

3. Aoki, I., S. D. Kee, D. B. Rutledge, and A. Hajimiri, "Distributed active transformer - A new power-combining and impedance-transformation technique," IEEE Trans. Microw. Theory Tech., Vol. 50, 316-331, 2002.
doi:10.1109/22.981284

4. Lee, O., K.H. An, C.-H. Lee, and J. Laskar, "A Parallel-segmented monolithic step-up transformer," IEEE Microw. Wireless Compon. Lett., Vol. 21, 468-470, 2011.
doi:10.1109/LMWC.2011.2161976

5. Aloui, S., B. Leite, N. Demirel, R. Plana, D. Belot, and E. Kerherve, "High-gain and linear 60-GHz power amplifier with a thin digital 65-nm CMOS technology," IEEE Trans. Microw. Theory Tech., Vol. 61, 2425-2437, 2013.
doi:10.1109/TMTT.2013.2258169

6. Lee, Y. and S. Hong, "A dual-power-mode output matching network for digitally modulated CMOS power amplifier," IEEE Trans. Microw. Theory Tech., Vol. 61, 1570-1579, 2013.
doi:10.1109/TMTT.2013.2246525

7. Park, C., J. Han, H. Kim, and S. Hong, "A 1.8-GHz CMOS power amplifier using a dual-primary transformer with improved efficiency in the low power region," IEEE Trans. Microw. Theory Tech., Vol. 56, 782-792, 2008.
doi:10.1109/TMTT.2008.918152

8. Lee, C., J. Park, and C. Park, "X-band cmos power amplifier using mode-locking method for sensor applications," J. of Electromagn. Waves and Appl., Vol. 26, 633-640, 2012.
doi:10.1080/09205071.2012.710783

9. Francois, B. and P. Reynaert, "A fully integrated watt-level linear 900-MHz CMOS RF power amplifier for LTE-applications," IEEE Trans. Microw. Theory Tech., Vol. 60, 1878-1885, 2012.
doi:10.1109/TMTT.2012.2189411

10. Hwang, H. and C. Park, "Current shared cascade structure for the driver stages of switching mode RF power amplifiers," IEEE Microw. Wireless Compon. Lett., Vol. 23, 605-607, 2013.
doi:10.1109/LMWC.2013.2280634

11. Hwang, H., D. Seo, J. Park, and C. Park, "Investigation of the power transistor size related to the efficiency of switching-mode RF CMOS power amplifiers," Microw. Opt. Technol., Vol. 56, 110-117, 2013.
doi:10.1002/mop.28068

12. Chen, Y.-C., Y.-H. Lin, J.-L. Lin, and H. Wang, "A Ka-band transformer-based doherty power amplifier for multi-Gb/s application in 90-nm CMOS," IEEE Microw. Wireless Compon. Lett., Vol. 28, 1134-1136, 2018.
doi:10.1109/LMWC.2018.2878133

13. Wu, C.-W., Y.-H. Lin, Y.-H. Hsiao, C.-F. Chou, Y.-C. Wu, and H. Wang, "Design of a 60-GHz high-output power stacked-FET power amplifier using transformer-based voltage-type power combining in 65-nm CMOS," IEEE Trans. Microw. Theory Tech., Vol. 66, 4595-4607, 2018.

14. Tsai, J.-H. and J.-W. Wang, "An X-band half-watt CMOS power amplifier using interweaved parallel combining transformer," IEEE Microw. Wireless Compon. Lett., Vol. 27, 491-493, 2017.
doi:10.1109/LMWC.2017.2690878

15. Ahn, H., S. Baek, I. Nam, D. An, J.K. Lee, M. Jeong, B.-E. Kim, J. Choi, and O. Lee, "A fully integrated dual-mode CMOS power amplifier with an autotransformer-based parallel combining transformer," IEEE Microw. Wireless Compon. Lett., Vol. 27, 833-835, 2017.
doi:10.1109/LMWC.2017.2734762