Vol. 81
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2019-01-07
Novel Directional Adaptive Relaxation Parameters for MUSIC-Like Algorithm
By
Progress In Electromagnetics Research Letters, Vol. 81, 21-28, 2019
Abstract
An algorithm called MUSIC-like algorithm was originally proposed as an alternative method to the MUltiple SIgnal Classi cation (MUSIC) algorithm in order to circumvent requirement on subspace segregation. The relaxation parameter β, which was introduced into the formulation of the MUSIC-like algorithm, has enabled the algorithm to achieve high resolution performance comparable to the MUSIC algorithm without requiring explicit estimation of the signal and noise subspaces. An adaptive framework for the MUSIC-like algorithm was later developed under the α-stable distributed noise environment. In spite of great improvement on target's resolvability performance, a trade-off between such improvement and the estimation bias is inherent. In this letter, two novel directional adaptive β-selection methods for MUSIC-like algorithm under α-stable distributed noise are proposed. The proposed methods aim at reducing estimation bias and noise sensitivity which are inherent in prior adaptive β framework. Simulation results highlight noticeable reduction on the estimation bias as well as the noise sensitivity of the proposed methods without excessive compromise on target's resolvability performance compared with the original adaptive β framework.
Citation
Narong Borijindargoon, and Boon Ng, "Novel Directional Adaptive Relaxation Parameters for MUSIC-Like Algorithm," Progress In Electromagnetics Research Letters, Vol. 81, 21-28, 2019.
doi:10.2528/PIERL18112002
References

1. Schmidt, R. O., "Multiple emitter location and signal parameter estimation," IEEE Trans. Antennas Propag., Vol. 34, No. 3, 276-280, Mar. 1986.
doi:10.1109/TAP.1986.1143830

2. Patole, S. M., M. Torlak, D. Wang, and M. Ali, "Automotive radars: A review of signal processing techniques," IEEE Signal Process. Mag., Vol. 34, No. 2, 22-35, Mar. 2017.
doi:10.1109/MSP.2016.2628914

3. Wan, L., X. Kong, and F. Xia, "Joint range-doppler-angle estimation for intelligent tracking of moving aerial targets," IEEE Internet Things J., Vol. 5, No. 3, 1625-1636, Jun. 2018.
doi:10.1109/JIOT.2017.2787785

4. Borijindargoon, N., B. P. Ng, and S. Rahardja, "MUSIC-like algorithm for source localization in electrical impedance tomography," IEEE Trans. Ind. Electron., 2018 (In Press).

5. Lee, O., J. Kim, Y. Bresler, and J. C. Ye, "Diffuse optical tomography using generalized MUSIC algorithm," IEEE Int. Symp. Biomed. Imag., 1142-1145, Jun. 2011.

6. Scholz, B., "Towards virtual electrical breast biopsy: space-frequency MUSIC for trans-admittance data," IEEE Trans. Med. Imag., Vol. 21, No. 6, 588-595, Jun. 2002.
doi:10.1109/TMI.2002.800609

7. Kim, J. M., O. K. Lee, and J. C. Ye, "Compressive MUSIC: Revisiting the link between compressive sensing and array signal processing," IEEE Trans. Inf. Theory, Vol. 58, No. 1, 278-301, Jan. 2012.
doi:10.1109/TIT.2011.2171529

8. Davies, M. E. and Y. C. Eldar, "Rank awareness in joint sparse recovery," IEEE Trans. Inf. Theory, Vol. 58, No. 2, 1135-1146, Feb. 2012.
doi:10.1109/TIT.2011.2173722

9. Lee, K., Y. Bresler, and M. Junge, "Subspace methods for joint sparse recovery," IEEE Trans. Inf. Theory, Vol. 58, No. 6, 3613-3641, Jun. 2012.
doi:10.1109/TIT.2012.2189196

10. Shao, M. and C. L. Nikias, Signal Processing With Alpha-Stable Distributions and Applications, Wiley-Interscience, 1995.

11. Akaike, H., "A new look at the statistical model identification," IEEE Trans. Autom. Control, Vol. 19, No. 6, 716-723, Dec. 1974.
doi:10.1109/TAC.1974.1100705

12. Rissanen, J., "Modeling by shortest data description," Automatica, Vol. 14, No. 5, 465-471, Sept. 1978.
doi:10.1016/0005-1098(78)90005-5

13. DjuriC, P. M., "A model selection rule for sinusoids in white Gaussian noise," IEEE Trans. Signal Process., Vol. 44, No. 7, 1744-1751, Jul. 1996.
doi:10.1109/78.510621

14. Liu, T. H. and J. M. Mendel, "A subspace-based direction finding algorithm using fractional lower order statistics," IEEE Trans. Signal Process., Vol. 49, No. 8, 1605-1613, Aug. 2001.
doi:10.1109/78.934131

15. Tsakalides, P. and C. L. Nikias, "The robust covariation-based MUSIC (ROC-MUSIC) algorithm for bearing estimation in impulsive noise environments," IEEE Trans. Signal Process., Vol. 44, No. 7, 1623-1633, Jul. 1996.
doi:10.1109/78.510611

16. Visuri, S., H. Oja, and V. Koivunen, "Subspace-based direction-of-arrival estimation using nonparametric statistics," IEEE Trans. Signal Process., Vol. 49, No. 9, 2060-2073, Sept. 2001.
doi:10.1109/78.942634

17. Adali, T. and S. Haykin, Adaptive Signal Processing: Next Generation Solutions, Vol. 55, John Wiley & Sons, 2010.
doi:10.1002/9780470575758

18. Zhang, Y. and B. P. Ng, "MUSIC-like DOA estimation without estimating the number of sources," IEEE Trans. Signal Process., Vol. 58, No. 3, 1668-1676, Mar. 2010.
doi:10.1109/TSP.2009.2037074

19. Reddy, V. V., B. P. Ng, and A. W. Khong, "Insights into MUSIC-like algorithm," IEEE Trans. Signal Process., Vol. 61, No. 10, 2551-2556, May 2013.
doi:10.1109/TSP.2013.2251337

20. Lim, H. S., B. P. Ng, and V. V. Reddy, "Generalized MUSIC-like array processing for underwater environments," IEEE J. Ocean. Eng., Vol. 42, No. 1, 124-134, Jan. 2017.

21. Borijindargoon, N. and B. P. Ng, "Directional adaptive MUSIC-like algorithm under α-stable distributed noise,", arXiv:1811.07110v1 [eess.SP], Nov. 2018.

22. Ng, B. P., M. H. Er, and C. Kot, "A MUSIC approach for estimation of directions of arrival of multiple narrowband and broadband sources," Signal Process., Vol. 40, No. 2–3, 319-323, Nov. 1994.

23. Pisarenko, V. F., "The retrieval of harmonics from a covariance function," Geophysical Journal International, Vol. 33, No. 3, 347-366, 1973.
doi:10.1111/j.1365-246X.1973.tb03424.x

24. Capon, J., "High-resolution frequency-wavenumber spectrum analysis," Proceedings of the IEEE, Vol. 57, No. 8, 1408-1418, Aug. 1969.
doi:10.1109/PROC.1969.7278