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Abstract—An algorithm called MUSIC-like algorithm was originally proposed as an alternative method
to the MUltiple SIgnal Classification (MUSIC) algorithm in order to circumvent requirement on subspace
segregation. The relaxation parameter β, which was introduced into the formulation of the MUSIC-
like algorithm, has enabled the algorithm to achieve high resolution performance comparable to the
MUSIC algorithm without requiring explicit estimation of the signal and noise subspaces. An adaptive
framework for the MUSIC-like algorithm was later developed under the α-stable distributed noise
environment. In spite of great improvement on target’s resolvability performance, a trade-off between
such improvement and the estimation bias is inherent. In this letter, two novel directional adaptive
β-selection methods for MUSIC-like algorithm under α-stable distributed noise are proposed. The
proposed methods aim at reducing estimation bias and noise sensitivity which are inherent in prior
adaptive β framework. Simulation results highlight noticeable reduction in the estimation bias as well
as the noise sensitivity of the proposed methods without excessive compromise on target’s resolvability
performance compared with the original adaptive β framework.

1. INTRODUCTION

MUSIC algorithm [1] is a well-known eigenstructure-based method for spectral and direction-of-arrival
(DOA) estimation with super resolution performance, which has been utilized in various applications
from targets localization under different media [2–6] to sparse signal recovery under the multiple
measurement vector (MMV) framework [7–9]. Despite its simplicity in terms of implementation, this
subspace-based method requires either a priori knowledge on the number of targets or a model order
estimated from the second-order moment of the obtained data in order to construct two orthogonal
subspaces namely signal and noise subspaces. A pseudospectrum of MUSIC algorithm can be obtained
as a function of a distance between each steering vector and the estimated noise subspace.

Signal model in array and statistical signal processing are often based on Gaussian assumption.
In many practical scenarios, the signal and particularly the noise model may not admit Gaussian
distribution. In this letter, we focus on impulse noise which can be modelled under α-stable distribution,
a sub-class of stable distributions [10]. When an impulse noise is present, the model order estimators
based on second order moment information such as the Akaike Information Criterion (AIC) and
Minimum Description Length (MDL) [11, 12] are likely to produce erroneous estimations, and hence
performance degradation of the MUSIC algorithm is expected [13].

Several techniques have been proposed in the literature to mitigate the above problem, all of
which aim at extracting valuable information of the contaminated data matrix prior to the subspace
decomposition process [14–16]. Despite the analysis based on fractional lower order moments framework,
they can be regarded as a 1-step M-estimator which is a broader class of weighted covariance
matrix [17]. Among various methods proposed for the impulse noise scenarios, the fractional lower order
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moment (FLOM) technique was reported to have comparable performance with the robust covariation
technique [15]. To obtain the FLOM matrix, each element of an M ×M FLOM matrix can be acquired
by computing Cik = E[xi(t)|xk(t)|p−2x∗

k(t)], where 1 < p < α ≤ 2, xi(t) and xk(t) are the data samples
obtained from the ith and kth sensors, and E[·] denotes the expectation operation. Note that the term
|xk(t)|p−2 plays a key role in reducing the effect of the outlier produced by an impulse noise by mean
of re-scaling each data point in x∗

k(t). After obtaining the FLOM matrix, the MUSIC algorithm can be
utilized where the signal and noise subspaces are estimated through the FLOM matrix. With less effect
of the outlier within the FLOM matrix, an improved model order estimation can be achieved.

To avoid subspace estimation altogether, the MUSIC-like algorithm can be used as an alternative
method. The algorithm was originally proposed as a means to circumvent model order estimation of
the MUSIC algorithm, a step which is required when a priori knowledge on the number of targets
is unavailable. A high resolution performance comparable to the MUSIC algorithm was shown to be
attainable under a beamforming framework formulated in [18]. Detailed analysis of the algorithm was
further carried out in [19] where the authors highlighted the role of a relaxation parameter β in regulating
the weight vector solution. Aside from the theoretical investigation, additional experiments based on
real data under controlled environment were also explored [4, 20]. Recently, an adaptive framework
for β-selection method was proposed which provided additional improvement on target’s resolvability
performance over the fixed β [21]. However, it was noted that a trade-off between such improvement
and estimation bias was inherent. It was suggested that the proposed adaptive framework could be
beneficial in applications where target’s resolvability is of the highest priority, and certain estimation
bias is tolerable.

To further improve the performance of adaptive β, two novel adaptive β-selection methods are
proposed in this letter. The rest of this letter is organized as follows. In Section 2, the signal model
and beamforming formulation of the MUSIC-like algorithm are provided where the working principle of
both fixed and adaptive β are briefly reviewed. Two novel adaptive β-selection methods are presented
in Section 3, which include the formulation of both adaptive β and the principle idea behind them. In
Section 4, simulation results comparing the performance of related algorithms are provided, and lastly,
concluding remarks are drawn in Section 5.

2. SIGNAL MODEL AND LINKS BETWEEN RELATED ALGORITHMS

Consider an M -sensor linear array with half-wavelength spacing situated in the far field with K
narrowband signal sources s(n) ∈ CK×1 which impinge along the direction Θ = [θ1, . . . , θK ]T . The
sensor’s snapshot x(n) can be modelled as

x(n) = A(Θ)s(n) + v(n), (1)

where A(Θ) = [a(θ1), . . . , a(θK)] ∈ C
M×K is an array manifold matrix which comprises K steering

vectors corresponding to each source direction; a(θ) is a steering vector which is a function of direction θ;
and v(n) ∈ C

M×1 denotes additive uncorrelated noise vector with zero mean. Under the assumption that
the signal sources are uncorrelated, and infinite number of snapshots can be obtained, the covariance
matrix R = E[XXH ] can be decomposed into two orthogonal subspaces, namely signal and noise
subspaces by eigendecomposition. Given a matrix Un which comprises eigenvectors that span the noise
subspace, the spatial spectrum of MUSIC algorithm can be obtained by exploiting the orthogonality
property between the signal and noise subspaces defined as PM (θ) = 10 log10

1
|a(θ)HUnUH

n a(θ)| .
It was shown in [22] that the MUSIC algorithm can be formulated under the beamforming

framework. With this notion, the MUSIC-like algorithm was later proposed in [18] as an optimization
problem for each look direction defined as

minw wHRw
s.t. wHa(θ)a(θ)Hw + β||w||22 = c,

(2)

where w is the weight vector solution of the optimization problem in Eq. (2); a scalar value β is a control
parameter which introduces certain relaxation into the constraint; and c is any constant value. It is
shown that the weight vector solution w is an eigenvector corresponding to the minimum eigenvalue
λmin of the generalized eigenvalue problem Rw = λ(a(θ)a(θ)H + βI)w, and the spatial spectrum of the
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MUSIC-like algorithm can be obtained by PMlike(θ) = 10 log10
1

|wHa(θ)|2 . The bound for β was proposed
in [19] as

max
θ∈Θ

λR,min

(a(θ)HR−1a(θ))−1

︸ ︷︷ ︸

βmin

< β < min
θ/∈Θ

λR,min

(a(θ)HR−1a(θ))−1

︸ ︷︷ ︸

βmax

, (3)

with the choice of β to be a value between βmin and βmax given as

β = (1 − ξ)βmin + ξβmax, (4)

where ξ ∈ (0, 1) can be chosen by ξ = βmin/βmax. Detailed analysis regarding the upper bound βmax

and lower bound βmin can be found in [19] Section 4 which can be summarized as follows. According to
Eq. (26) in [19] Section IV, β value should be much larger than βmin along the source directions, and
according to Eq. (29) in [19] Section IV, β value should be much smaller than βmax along the non-source
directions. Note that the β value proposed in [19] is a fixed value throughout all look directions. The idea
of β-selection method was further advanced in [21] under an adaptive framework where the value of β can
be automatically readjusted corresponding to look directions (either source or non-source directions).
The underlying notion was based on a distance parameter ξθ which approximates the distance between
each steering vector and the anchor point uM , which is an eigenvector corresponding to the minimum
eigenvalue λR,min of the data covariance matrix R. Each ξθ can be obtained by ξθ = 1 − |uH

Ma(θ)|,
where ||a(θ)||22 = 1, and the value of ξθ is varied within the range of ξθ ∈ [0, 1]. The adaptive βP (θ) can
be obtained by substituting ξθ into Eq. (4), and the adaptive βP (θ) can now be reexpressed for each
look direction as

βP (θ) = βmax − δβ|uH
Ma(θ)|, (5)

where δβ = βmax − βmin. The working principle of βP (θ) can be briefly summarized as follows. The
values of βP (θ) along the source directions (θ ∈ Θ) are allowed to take up a relatively large values
without exceeding the value of βmax. On the other hand, the value of βP (θ) along non-source directions
(θ /∈ Θ) should be kept low without extending lower than the value of βmin. Detailed illustration on the
performance improvement of βP (θ) can be found in [21]. It was noted that in spite of great improvement
on resolvability performance, the estimated direction of βP (θ) is inherently biased. In the next section,
two novel adaptive β-selection methods are proposed in order to reduce the estimation bias and noise
sensitivity of βP (θ).

3. NOVEL ADAPTIVE β SELECTION METHODS

3.1. The First Method: Adaptive βC(θ)

With the result obtained from Eq. (5), it can be observed that the choice of βP (θ) is associated with an
inverse of Pisarenko’s output [23], which is an inner product between an eigenvector uM and the steering
vector corresponding to each look direction a(θ). Due to noise sensitivity characteristic of Pisarenko’s
method, we propose an alternative method with an objective to reduce the estimation bias of βP (θ)
while maintaining a satisfactory targets resolvability performance. A new adaptive βC(θ) parameter
based on a notion of re-scaled Capon’s output is proposed, where βC(θ) can be varied within the range
of [βmin, βmax]. The new adaptive βC(θ) is defined as

βC(θ) =
(a(θ)HR−1a(θ))−1 − minθ/∈Θ(a(θ)HR−1a(θ))−1

maxθ∈Θ(a(θ)HR−1a(θ))−1 − minθ/∈Θ(a(θ)HR−1a(θ))−1
δβ + βmin, (6)

The notion behind Eq. (6) can be summarized as follows. To obtain a re-scaled Capon’s output within
the range of [βmin, βmax], the Capon’s output is first obtained by computing (a(θ)HR−1a(θ))−1 for each
look direction [24]. Next, the minimum noise power (minθ/∈Θ(a(θ)HR−1a(θ))−1) and maximum targets
power (maxθ∈Θ(a(θ)HR−1a(θ))−1) are determined to obtain the range of spatial spectrum. βC(θ) can
now be obtained by the procedure denoted in Eq. (6) which comprises 4 steps as follows. Firstly, the
Capon’s output for each look direction is shifted down by the amount reflected in the minimum power
of the noise floor. Secondly, it is normalized by the range of the spatial spectrum. Thirdly, it is re-scaled
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Figure 1. Variation of (a) βP (θ) and (b) βC(θ) correspond to each look direction.

up to the range of [βmin, βmax] by δβ. Lastly, it is shifted up so that the βC(θ) ≥ βmin. Consider a
uniform linear array (ULA) of M = 10 sensors with 3 targets situated at Θ = [50◦, 65◦, 110◦] where
100 data snapshots are obtained and SNR = −6 dB. The variation of βP (θ) and βC(θ) can be seen in
Figs. 1(a) and (b), respectively. In Fig. 1(a), the variation of βP (θ) along each look direction reflects
noise sensitivity characteristic of this method. On the other hand, as can be seen in Fig. 1(b), the
larger values of βC(θ) are allowed along source directions while they are kept low along the non-source
directions. As will be shown in the next section, this enhancement of βC(θ) along the source directions
together with a suppression along the non-source directions is able to lower the estimation bias without
compromising the resolvability performance of the algorithm.

3.2. The Second Method: Adaptive βLC(θ)

With an objective to further optimize the values of βC(θ) along source and non-source directions, it
is observed that the values of βC(θ) along non-source directions as shown in Fig. 1(b) can be further
reduced. We now propose a new adaptive βLC(θ) where the working principle is as follows. Along
source directions, βLC(θ) is allowed to take up maximum value (βmax) while it should be kept minimum
(βmin) along non-source directions. This procedure can be accomplished through a generalized logistic
function (GLF) which is defined as Y (x) = A+(K−A)/(1+exp(−B(x−M))), where Y (x) is the GLF
output; A and K are the lower and upper asymptotes; B is the growth rate; and M is the location with
maximum growth rate. To illustrate the GLF output, a plot of an arbitrary GLF is shown in Fig. 2(a)
where A and K are set as 1 and 3, respectively; B is set to 2; and M is set to 4. The new βLC(θ)
can be obtained by passing Capon’s output to the GLF where lower and upper asymptotes to be set
as βmin and βmax, respectively. By doing so, the value of βLC(θ) will be limited within the range of
[βmin, βmax]. The growth rate is now defined by βmax/βmin which corresponds to the signal-to-noise ratio
(SNR) of the obtained data. When SNR is high, the obtained data are with high fidelity, and hence
the growth rate (βmax/βmin = 1/ξ) is automatically set to a high value, which is equivalent to a sharp
slope in Fig. 2(a). This can be regarded as a sharp cutoff when considering if a particular direction
has a high probability of being source direction. In contrast, when SNR is low, the obtained data are
with low fidelity, and hence the growth rate will be automatically set to a lower value. The location
for maximum growth rate works in a similar fashion as a location of the cutoff point, where any value
that is greater than the cutoff point will be pushed toward the upper asymptote, and any value that is
less than the cutoff point will be pushed toward the lower asymptote. The cutoff point is specified by
χmaxθ∈Θ(a(θ)HR−1a(θ))−1, where χ = 0.8 is used. Although it is not identical, this can be regarded
in a similar fashion as a way to specify the angles of half-power-beamwidth in a spectral plot. The new
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adaptive βLC(θ) can now be defined as

βLC(θ) = βmin + δβ/(1 + exp(−(a(θ)HR−1a(θ))−1 − χmaxθ∈Θ(a(θ)HR−1a(θ))−1

ξ
)). (7)

As can be seen in Fig. 2(b), βLC(θ) along source directions were assigned to a relatively large value
while it is kept to the minimum value along non-source directions. The discriminating power of βLC(θ)
can be observed by comparing Fig. 2(b) with Fig. 1(b).
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Figure 2. (a) Generalized logistic function and (b) Variation of βLC(θ) corresponds to each look
direction.

4. SIMULATION RESULTS

In this section, performances of the MUSIC-like algorithm based on the proposed βC(θ) and βLC(θ)
are compared with the MUSIC, FLOM-MUSIC, and the MUSIC-like algorithm based on fixed β and
βP (θ). For signal source simulation, we follow the same configuration as presented in the previous
section (ULA of M = 10 with 100 snapshots of data). The generalized signal-to-noise ratio (GSNR)
will be used when α < 2, which is defined as GSNR(dB) = 10 log10(E[|s(t)|2]/γα). The impulse noise
under the consideration is complex isotropic symmetric α-stable (SαS) distributed. The α parameter
specifies the likelihood of outlier occurrence as α < 2 gets smaller. To obtain different GSNR levels,
the γ parameter, which can be associated with the standard deviation under Gaussian distribution, is
varied. To obtain the spatial spectrum of FLOM-MUSIC algorithm (when α < 2), each element of an
M ×M FLOM matrix is first estimated prior to the subspace decomposition. This can be accomplished
through the weighted covariance matrix Cik = E[xi(t)|xk(t)|p−2x∗

k(t)], where p = 1.1 is set.
The spatial spectra of related algorithms are shown in Fig. 3 where two targets are situated at

Θ = [70◦, 85◦] and GSNR = 0 dB. As can be seen, the MUSIC algorithm fails under an impulse noise
condition (α = 1.7). However, the FLOM-MUSIC and the MUSIC-like with either fixed or adaptive
β are able to identify all targets in non-Gaussian scenarios. Among MUSIC-like algorithms, note that
βLC(θ) has the lowest noise floor followed by βC(θ), βP (θ), and β.

A comparison between spatial spectra produced by the MUSIC-like algorithm with βC(θ) and
βLC(θ) is shown in Fig. 4. As can be seen in Figs. 4(a) and 4(b), the spectra plots obtained from
βLC(θ) are less sensitive along non-source directions compared with the spectra plots obtained from
βC(θ). Additional arrows are provided in both figures to highlight the sharp response characteristic
of βLC(θ) over βC(θ). Despite sharp response characteristic of βLC(θ), it should be noted that this is
accomplished through an extra step (GLF) taken while computing βLC(θ).
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Figure 3. The spatial spectra of the related algorithms.

40 60 80 100 120
Look direction, θ (deg)

0

5

10

15

20

25

30

Sp
at

ia
l

Sp
ec

tr
u

m
(d

B
)

α = 2 , GSNR = -5 dB, Θ = [ 70ο, 85ο]

MUSIC-lik e, β 

β
C (θ)

MUSIC-lik e, LC (θ)

40 60 80 100 120
Look direction, θ (deg)

0

10

20

30

40

Sp
at

ia
l

Sp
ec

tr
u

m
(d

B
)

α = 1 .7, GSNR = 5 d B, Θ = [ 70ο, 85ο]

MUSIC-lik e, C (θ)
MUSIC-lik e, β LC (θ)

β 

(b)(a)

Figure 4. The spatial spectra of the MUSIC-like algorithm with βC(θ) and βLC(θ) where (a) α = 2,
GSNR = −5 dB and (b) α = 1.7, GSNR = 5dB.

Next, the performance parameters, probability of resolution and average root-mean-square error
(RMSE) of related algorithms under Gaussian and non-Gaussian noise scenarios (α = 2 and 1.7) at
different levels of GSNR based on Monte Carlo simulation of 1000 trials with three targets situated at
Θ = [50◦, 65◦, 110◦] are shown in Figs. 5 and 6. Note that in the case of α = 2, the complex isotropic
SαS is reduced to Gaussian distribution, and hence FLOM-MUSIC will not be used for comparison. It
can be seen in Figs. 5 and 6 that the proposed βC(θ) is able to reduce estimation bias of βP (θ) without
compromising the targets’ resolvability performance. Additional reduction on estimation bias can be
obtained by βLC(θ).

It can be seen in Fig. 6 that the estimation bias of βLC(θ) is approaching the fixed β. However,
the rate of targets resolvability of βLC(θ) is slightly slower than the other methods in a certain range
of GSNR levels as can be seen in Fig. 5. Note that both fixed and adaptive β-selection methods
exhibit a robust characteristic which work in both Gaussian and non-Gaussian noises without requiring
a preconditioned covariance matrix as the FLOM-MUSIC algorithm does.
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Figure 5. The probability of resolution of the related algorihtms where (a) α = 2 and (b) α = 1.7 were
set.
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Figure 6. The RMSE of the related algorihtms where (a) α = 2 and (b) α = 1.7 were set.

5. CONCLUSION

In this letter, two novel adaptive β-selection methods (βC(θ) and βLC(θ)) were proposed. Simulation
results highlight a reduction in estimation bias and noise sensitivity characteristic, which is inherent
in the original adaptive framework obtained form βP (θ). In short, both βC(θ) and βLC(θ) are able to
obtain lower estimation bias than βP (θ). βC(θ) is the best at balancing both performance parameters.
Within the adaptive framework, βLC(θ) has the lowest estimation bias with slight trade-off on the rate
of targets resolvability performance.
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