Vol. 81
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2019-02-21
Fast Calculation of Monostatic Radar Cross Section of Conducting Targets Using Hierarchical Characteristic Basis Function Method and Singular Value Decomposition
By
Progress In Electromagnetics Research Letters, Vol. 81, 133-139, 2019
Abstract
A novel hierarchical characteristic basis function method (HCBFM) is proposed to calculate monostatic radar cross section based on singular value decomposition characteristic basis function method. In order to reduce the number of incident plane waves and accelerate the generation of characteristic basis functions (CBFs), an improved CBFs construction method is studied in this paper. Firstly, the target is partitioned with hierarchical approach, and at each incident plane wave, the high-level CBFs defined in large blocks are expressed as a linear combination of the previously generated low-level CBFs defined in the corresponding small blocks. Finally, the high-level CBFs in large blocks are orthogonalized by using singular value decomposition at multiple excitations, and a set of linearly independent CBFs can be obtained. Numerical results are given to demonstrate the accuracy and high efficiency of the proposed method.
Citation
Can Xia, Wanqing You, and Yufa Sun, "Fast Calculation of Monostatic Radar Cross Section of Conducting Targets Using Hierarchical Characteristic Basis Function Method and Singular Value Decomposition," Progress In Electromagnetics Research Letters, Vol. 81, 133-139, 2019.
doi:10.2528/PIERL18111609
References

1. Harrington, R. F., Field Computation by Moment Methods, IEEE Press, 1993.
doi:10.1109/9780470544631

2. Song, J., C. C. Lu, and W. C. Chew, "Multilevel fast multipole algorithm for electromagnetic scattering by large complex objects," IEEE Transactions on Antennas and Propagation, Vol. 45, No. 10, 1488-1493, 1997.
doi:10.1109/8.633855

3. Bleszynski, E., M. Bleszynski, and T. Jaroszewicz, "Adaptive integral method for solving largescale electromagnetic scattering and radiation problems," Radio Science, Vol. 31, No. 5, 1225-1251, 1996.
doi:10.1029/96RS02504

4. Zhao, K., M. N. Vouvakis, and J. F. Lee, "The adaptive cross approximation algorithm for accelerated method of moments computations of EMC problems," IEEE Transactions Electromagnetic Compatibility, Vol. 47, No. 4, 763-773, 2005.
doi:10.1109/TEMC.2005.857898

5. Prakash, V. V. S. and R. Mittra, "Characteristic basis function method: A new technique for efficient solution of method of moments matrix equations," Microwave and Optical Technology Letters, Vol. 36, No. 2, 95-100, 2003.
doi:10.1002/mop.10685

6. Mittra, R., G. Bianconi, and C. Pelletti, "A computationally efficient technique for prototyping planar antennas and printed circuits for wireless applications," Proceedings of the IEEE, Vol. 100, No. 7, 2122-2131, 2012.
doi:10.1109/JPROC.2012.2187769

7. Rao, S. M., D. R. Wilton, and A. W. Glisson, "Electromagnetic scattering by surfaces of arbitrary shape," IEEE Transactions on Antennas and Propagation, Vol. 30, No. 3, 409-418, 1982.
doi:10.1109/TAP.1982.1142818

8. Lucente, E., A. Monorchio, and R. Mittra, "An iteration-free MoM approach based on excitation independent characteristic basis functions for solving large multiscale electromagnetic scattering problems," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 4, 999-1007, 2008.
doi:10.1109/TAP.2008.919166

9. Wang, Z. G., Y. F. Sun, and G. H. Wang, "Analysis of electromagnetic scattering from perfect electric conducting targets using improved characteristic basis function method and fast dipole method," Journal of Electromagnetic Waves and Applications, Vol. 28, No. 7, 893-902, 2014.
doi:10.1080/09205071.2014.895425

10. Shaeffer, J., "Direct solve of electrically large integral equations for problem sizes to 1M unknowns," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 8, 2306-2313, 2008.
doi:10.1109/TAP.2008.926739

11. Sun, Y. F., C. H. Chan, R. Mittra, and L. Tsang, "Characteristic basis function method for solving large problems arising in dense medium scattering," IEEE Antennas and Propagation Society International Symposium, Vol. 2, 1068-1071, 2003.

12. Konno, K., Q. Chen, and K. Sawaya, "Optimization of block size for CBFM in MoM," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 10, 4719-4724, 2012.
doi:10.1109/TAP.2012.2207330

13. Laviada, J., F. Las-Heras, M. R. Pino, and R. Mittra, "Solution of electrically large problems with multilevel characteristic basis functions," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 10, 3189-3198, 2009.
doi:10.1109/TAP.2009.2028603

14. Tamayo, J. M., A. Heldring, and J. M. Rius, "Multilevel adaptive cross approximation (MLACA)," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 12, 4600-4608, 2011.
doi:10.1109/TAP.2011.2165476