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Fast Calculation of Monostatic Radar Cross Section of Conducting
Targets Using Hierarchical Characteristic Basis Function Method

and Singular Value Decomposition

Can Xia1, 2, Wanqing You2, and Yufa Sun2, *

Abstract—A novel hierarchical characteristic basis function method (HCBFM) is proposed to calculate
monostatic radar cross section based on singular value decomposition characteristic basis function
method. In order to reduce the number of incident plane waves and accelerate the generation of
characteristic basis functions (CBFs), an improved CBFs construction method is studied in this paper.
Firstly, the target is partitioned with hierarchical approach, and at each incident plane wave, the high-
level CBFs defined in large blocks are expressed as a linear combination of the previously generated
low-level CBFs defined in the corresponding small blocks. Finally, the high-level CBFs in large blocks
are orthogonalized by using singular value decomposition at multiple excitations, and a set of linearly
independent CBFs can be obtained. Numerical results are given to demonstrate the accuracy and high
efficiency of the proposed method.

1. INTRODUCTION

The method of moments (MoM) [1] is preferred in the solution of electromagnetic scattering problems,
which converts integral equations into a dense linear matrix system. However, it places a considerable
burden on the computational complexity and memory requirement when the electrically large target is
analyzed. Recently, some iterative solvers, such as the multilevel fast multipole method (MLFMM) [2]
based on addition theorem for spherical harmonics, the adaptive integral method (AIM) [3]: a fast
iterative integral-equation solver through splitting the impedance matrix into near-field and far-
field components, and the adaptive cross approximation (ACA) algorithm [4], which is a low-rank
decomposition method, are developed to improve the calculation of the MoM. Unfortunately, these
iterative methods suffer from convergence problems of ill-conditional matrices for electrically large
targets under analysis. Especially, when the monostatic scattering problems are considered, the iterative
process need be repeated for each excitation.

The characteristic basis function method (CBFM) [5, 6] is an iteration-free method, which can speed
up the direct solution of the MoM matrix equations by dividing the target into multiple adjacent blocks.
For each block, the CBFM constructs macro basis functions called characteristic basis functions (CBFs)
which indicate the current distribution of each block. And the number of CBFs is smaller than that of
the RWG basis functions proposed by Rao et al. [7] in 1982. In [8], a singular value decomposition based
CBFM (SVD-CBFM) is proposed to solve multiple excitation electromagnetic scattering problems. An
improved SVD-CBFM [9] is presented to further reduce the number of incident plane waves and CBFs.
However, as the electrical size of target increases, the size of each block will become large with retaining
a proper number of blocks. This will lead to the increase of unknowns of each block, and the construction
of CBFs becomes very time consuming.
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In order to accelerate generation of CBFs and calculation of the reduced matrix equation,
hierarchical CBFM (HCBFM) is proposed in this paper. The target is firstly divided with hierarchical
partitioning approach. For each incident plane wave, the CBFs defined in large blocks are expressed as a
linear combination of the previously generated low-level primary characteristic basis functions (PCBFs)
and secondary characteristic basis functions (SCBFs) defined in the relatively small blocks, which can
avoid directly solving the CBFs in the large blocks. Finally, the high-level CBFs in large blocks are
orthogonalized by using singular value decomposition (SVD) at multiple excitations, and a set of linearly
independent CBFs can be obtained. Besides, the ACA algorithm is also employed to fill the impedance
matrix of far field, which can further accelerate the matrix-vector multiplication procedure of generating
SCBFs and constructing the reduced matrix.

2. FORMULATION

2.1. Conventional SVD-CBFM

The surface integral equation is usually transformed into the following matrix equation using MoM.

Z · J = E (1)

where Z is an N × N impedance matrix; J and E are N × 1 current vector and excitation vector,
respectively; and N is the number of unknowns. The CBFM firstly divides the target into M adjacent
blocks then constructs characteristic basis function on each block. Eq. (1) can be expressed as⎡

⎢⎢⎢⎣
Z11 Z12 . . . Z1M

Z21 Z22 . . . Z2M
...

... . . .
...

ZM1 ZM2 . . . ZMM

⎤
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⎡
⎢⎢⎢⎣

J1

J2
...
JM

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

E1

E2
...
EM

⎤
⎥⎥⎥⎦ (2)

where Zij (i = 1, 2 . . . , M ; j = 1, 2, . . . M) is an Ni ×Nj impedance sub-matrix, and Ji and Ei are the
surface current vector and excitation vector, respectively.

In order to obtain a set of completely orthogonal CBFs, the SVD-CBFM needs to set large number
of incident plane wave excitations in the direction of elevation and azimuth (θ and ϕ). Let Nθ and Nϕ

indicate the number of samples in θ and ϕ, respectively. Considering two kinds of polarization, the
total number of incident excitations is Np = 2NθNϕ, which are arranged in matrix ENp

ii . The PCBFs
for each block under multiple plane wave excitations can be obtained by solving the following equation.

Ze
iiJ

P
ii = ENp

ii (i = 1, 2, 3 . . . M) (3)

where Ze
ii is an N e

i ×N e
i extended self-impedance matrix, and JP

ii and ENp

ii are N e
i ×Np current matrix

and excitation matrix, respectively.
Usually, the number of plane wave excitations used to generate the CBFs will exceed the number

of degrees of freedom associated with the block, and it is desirable to remove the redundancy in the
basic functions by applying SVD. This is done by expressing the CBFs as

JP
ii = UWVT (4)

where U is an N e
i × ri orthogonal matrix, a complete set of CBFs of block i. W is an ri × ri diagonal

matrix, and V is an ri × Np orthogonal matrix. Supposing that Jk
i is the kth column vector of U, the

current Ji of block i can be expressed as a linear combination of Jk
i as follows:

Ji =
ri∑

k=1

αk
i J

k
i (i = 1, 2, 3 . . . M) (5)

where k = 1, 2, 3 . . . ri, αk
i is an unknown coefficient to be determined. Multiplying both sides of

Eq. (2) by the transpose of Ji, the reduced coefficient matrix can be expressed as

ZR · α = ER (6)
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where ZR is a
M∑
i=1

ri×
M∑
i=1

ri reduced matrix, and α and ER are
M∑
i=1

ri×1 coefficient vector and excitation

vector, respectively. The coefficient vector can be solved after the LU decomposition [10] to the reduced
matrix, then the total current distribution of the target can be obtained.

2.2. The Improved SVD-CBFM

In order to reduce the number of incident plane waves, accelerate the generation of CBFs and the filling
speed of the reduced matrix, the construction of CBFs is improved in [9]. In this method, the coupling
effect among the different blocks is taken into account through calculating the SCBFs of each block,
which greatly reduces the number of incident plane wave excitations. Let Hθ and Hϕ indicate the
numbers of samples in θ and ϕ, respectively. Considering two kinds of polarization, the total number
of incident plane wave excitations is Hp = 2HθHϕ(Hp � Np). The PCBFs for each block under each
new plane wave excitation can be obtained by solving the following equation:

Ze
iiJ

P
i = Eii (i = 1, 2 . . . M) (7)

where Ze
ii is an N e

i × N e
i extended self-impedance matrix, and JP

i and Eii are N e
i × 1 current vector

and excitation vector, respectively. According to the Foldy-Lax multiple scattering equation, the first-
order SCBFs of block i are calculated by scattered fields due to the PCBFs on all blocks except from
itself. Similarly, we can calculate the additional second-order SCBFs. These SCBFs can be written as
follows [11]:

Ze
iiJ

S1
i = −

M∑
j=1(j �=i)

ZijJP
j (i = 1, 2 . . . M) (8)

Ze
iiJ

S2
i = −

M∑
j=1(j �=i)

ZijJS1
j (i = 1, 2 . . . M) (9)

Therefore, the real CBFs of block i can be obtained by solving Eqs. (7), (8), (9) and removing the
extended part. Then a set of perfectly orthogonal CBFs for each block can be obtained by using the
SVD procedure under Hp incident wave excitations.

2.3. The Hierarchical CBFM

It is well known that the target needs to be first divided into multiple blocks when the CBFM is applied,
but the size of the blocks has a great impact on computational time and storage consumption. In order
to achieve the minimum calculation time, the numbers of blocks and unknowns N should be satisfied
with M ≈ 0.9N1/3 according to [12]. However, when the electrically large target is analyzed, it is usually
divided into large blocks for improving the efficiency of calculation. The larger the size of blocks is, the
smaller the reduction matrix which can be easily solved [13] is. Inevitably large subdomain contains
more unknowns, and the procedure of generating CBFs will become very time consuming. In order to
mitigate this problem, a novel HCBFM is proposed in this paper. In HCBFM, the electrically large
target is firstly divided with hierarchical partitioning approach, and at each incident plane wave, the
high-level CBFs defined in large block are expressed as a linear combination of the previously generated
low-level CBFs defined in the corresponding small block, which can avoid directly solving the CBFs in
the large block. Suppose that the target is firstly divided into M blocks, then each block is subdivided
into N subdomains, and these subdomains can be further divided until the lowest level subdomains
contain a few of RWG basis functions. For instance, as shown in Fig. 1, the target is firstly divided into
four (M = 4) blocks called the second-level. Each block is subdivided into nine (N = 9) subdomains,
called the first-level. The solid dot denoted as 1 {9} in Fig. 1 stands for the ninth subdomain of the
first block.

It is assumed that the target is also illuminated by Hp incident wave excitations. Supposing that
the second-level block i contains N subdomains, for each specific plane wave excitation, the PCBFs of
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Figure 1. Hierarchical analysis of a target.

first-level extended small subdomain i {k} (i = 1, 2 . . . M ; k = 1, 2 . . . N) are expressed as:

Zi{k}i{k}JP
i{k} = Er

i{k} (10)

where Zi{k}i{k} is the self-impedance of the extended subdomain k in the block i, and
Er

i{k} (r = 1, 2 . . . 2HθHϕ) is the rth incident plane wave excitation vector. Considering the mutual
effects with other first-level small subdomains, the first-order SCBFs and the second-order SCBFs of
first-level extended small subdomain k in the block i are generated as

Zi{k}i{k}JS1
i{k} = −

N∑
h=1(h �=k)

Zi{k}i{h}JP
i{h} (11)

Zi{k}i{k}JS2
i{k} = −

N∑
h=1(h �=k)

Zi{k}i{h}JS1
i{h} (12)

where Zi{k}i{h} is a mutual impedance matrix between subdomain k and h (h = 1, 2, 3 . . . N) in the block
i. The linear combination of the PCBFs and SCBFs after removing the extended portion can indicate
the characteristic basis function of subdomain k in the block i under the rth incident wave excitation

Jr
i{k} = ai{k}JP

i{k} + bi{k}JS1
i{k} + ci{k}JS2

i{k} (13)

Then constructing a reduced matrix equation of N small subdomains according to Eq. (6), the current
coefficients ai{k}, bi{k} and ci{k} can be obtained by directly solving the reduced matrix equation. ai{k},
bi{k}, and ci{k} are substituted into Eq. (13), and the real current of the subdomain i {k} can be obtained
under the rth incident wave excitation. Therefore, superimposing the currents of N small subdomains,
the current response of the second-level block i under the rth incident wave excitation can be achieved
as:

Jr
i =

N∑
k=1

Jr
i{k} (14)

Then Ji of the second-level block i under multiple incident excitations are compressed by using SVD,
and a set of linearly independent CBFs can be obtained. Finally, constructing a reduced matrix equation
of M blocks on the second level in the same way, we can get the surface current of the target by direct
solver.

In the HCBFM, the matrix-vector multiplication procedures of generating SCBFs and constructing
the reduced matrix are also time consuming. In order to further improve the efficiency of calculation,
the ACA algorithm [14] is also used to speed up the calculation of each level impedance matrix of far
field.

3. NUMERICAL RESULTS AND DISCUSSIONS

In this section, several numerical examples are given to demonstrate the accuracy and efficiency of
the proposed method. All the results are computed on the Intel R©Core R©CPU E5-2630 V4@2.2 GHz,
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256 GB RAM PC. The compiler used is Code::Blocks. The ACA and SVD threshold are set to 10−3,
and the second-order SCBFs are chosen in the paper. We use the relative error of the RCS to estimate
the accuracy of the proposed method, and the relative error is defined as follows:

Err(%) = 100 ×
√∑

n

∣∣RCSpm − RCSref
∣∣2/√∑

n

∣∣RCSref
∣∣2 (15)

where RCSpm is the RCS provided by the proposed method, and RCSref is the RCS provided by the
FEKO.

Firstly, monostatic RCS for a 252.3744-mm PEC almond is calculated at the incident frequency
of 7 GHz, and the incident angle is set to θi = 0◦ − 180◦, ϕi = 90◦. The almond is divided into 6236
triangular patches, and the number of unknowns is 15950, which is divided into 48 first-level blocks and
12 second-level blocks, and each block is extended 0.05λ on the first-level and 0.15λ on the second-level
in all directions. The monostatic RCSs in VV polarization calculated by the improved SVD-CBFM
and HCBFM are shown in Fig. 2. In the two methods, the number of incident plane waves is set to
Nθ = Nϕ = 8. When the improved CBFM is applied, the number of generated CBFs is 384 on each
block, which can obtain about 82 CBFs after SVD, and the dimension of the reduced matrix is 988×988.
But when the HCBFM is applied, the number of generated CBFs is 128 on each second-level block,
which can obtain about 75 CBFs after SVD, and the dimension of the reduced matrix is 900 × 900,
which is decreased about 9% compared to the previous method. It can be seen from Fig. 2 that the
RCSs calculated by the two methods agree well with calculation results of the FEKO.

Figure 2. Monostatic RCS of the PEC almond in V V polarization.

Table 1 shows the computational time and relative error of the two methods. It can be found
that the HCBFM outperforms the improved SVD-CBFM in computation time under the equivalent
precision.

Finally, monostatic RCS for 256 discrete conducting cubs with 0.25 m side length at the incident
frequency of 300 MHz is calculated. The incident angle is set to θi = 0◦ − 180◦, ϕi = 90◦. The distance
between two adjacent targets is 0.25 m. The geometry is divided into 22778 triangular patches, and
the number of unknowns is 34176, which is divided into 64 first-level blocks and 16 second-level blocks,
and each block is extended 0.05λ on the first-level and 0.15λ on the second-level in all directions. The
monostatic RCSs in HH polarization calculated by the improved SVD-CBFM and HCBFM are shown
in Fig. 3. In the two methods, the number of incident plane waves is set to Nθ = 10, Nϕ = 8. When
the improved CBFM is applied, the number of generated CBFs is 480 on each block, which can obtain
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Table 1. CPU time and relative error of the PEC almond.

Methods
CBFs

generation
reduced matrix

filling
total time

relative
error (%)

Improved
SVD-CBFM

1157s 2739s 3903s 0.18

HCBFM 557s 2023s 2585s 1.09

about 114 CBFs after SVD, and the dimension of the reduced matrix is 1824 × 1824. But when the
HCBFM is applied, the number of generated CBFs is 160 on each second-level block, which can obtain
about 106 CBFs after SVD, and the dimension of the reduced matrix is 1692×1692, which is decreased
efficiently compared to the previous method. It can be seen from Fig. 3 that the RCSs calculated by
the two methods agree well with calculation results of the FEKO. The computational time and relative
error of the two methods are shown in Table 2.

Figure 3. Monostatic RCS of 256 discrete conducting cubs in HH polarization.

Table 2. CPU time and relative error of 256 discrete conducting cubs.

Methods CBFs generation reduced matrix filling total time relative error (%)
Improved CBFM 4504s 36809s 41345s 0.55

HCBFM 1933s 13811s 15776s 1.06

4. CONCLUSION

In this paper, the HCBFM is proposed to solve electromagnetic scattering problem efficiently under
multiple incident excitations. This proposed method can reduce the time of CBFs generation and
reduced matrix filling significantly with a small number of incident plane wave excitations compared to
the SVD-CBFM. Besides, the ACA algorithm is also used to accelerate the calculation of impedance
matrix of far field efficiently. Numerical results demonstrate that the proposed method is accurate and
efficient.
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