1. Tekeli, B., S. Z. Gurbuz, and M. Yuksel, "Information-theoretic feature selection for human micro-Doppler signature classification," IEEE Transactions on Geoscience and Remote Sensing, Vol. 54, No. 5, 2749-2762, 2016.
doi:10.1109/TGRS.2015.2505409
2. Garcia-Rubia, J. M., O. Kilic, V. Dang, Q. M. Nguyen, and N. Tran, "Analysis of moving human micro-doppler signature in forest environments," Progress In Electromagnetics Research, Vol. 148, 1-14, 2014.
doi:10.2528/PIER14012306
3. Chen, V. C., F. Li, S. S. Ho, and H. Wechsler, "Micro-Doppler effect in radar: Phenomenon, model, and simulation study," IEEE Transactions on Aerospace and Electronic Systems, Vol. 42, No. 1, 2-21, 2006.
doi:10.1109/TAES.2006.1603402
4. Chen, V. C., F. Li, S. S. Ho, and H. Wechsler, "Analysis of micro-Doppler signature," IEE Proceeding - Radar Sonar and Navigation, Vol. 150, No. 4, 271-276, 2003.
doi:10.1049/ip-rsn:20030743
5. Li, L., Z. Huang, and W. Zhang, "Instantaneous frequency estimation methods of micro-doppler signal," Progress In Electromagnetics Research C, Vol. 58, 125-134, 2015.
doi:10.2528/PIERC15060203
6. Kim, Y. and H. Ling, "Human activity classification based on micro-Doppler signatures using a support vector machine," IEEE Transactions on Geoscience and Remote Sensing, Vol. 47, No. 5, 1328-1337, 2009.
doi:10.1109/TGRS.2009.2012849
7. Fioranelli, F., M. Ritchie, and H. Griffiths, "Multistatic human micro-Doppler classification of armed/unarmed personnel," IET Radar Sonar and Navigation, Vol. 9, No. 7, 857-865, 2015.
doi:10.1049/iet-rsn.2014.0360
8. Kim, Y. and T. Moon, "Human detection and activity classification based on micro-Doppler signatures using deep convolutional neural networks," IEEE Geoscience and Remote Sensing Letters, Vol. 13, No. 1, 8-12, 2016.
doi:10.1109/LGRS.2015.2491329
9. Kim, Y. and B. Toomajian, "Hand gesture recognition using micro-doppler signatures with convolutional neural network," IEEE Access, Vol. 4, 7125-7130, 2016.
doi:10.1109/ACCESS.2016.2617282
10. Kim, Y. and Y. Li, "Human activity classification with transmission and reflection coefficients of on-body antennas through deep convolutional neural networks," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 5, 2764-2768, 2017.
doi:10.1109/TAP.2017.2677918
11. Chen, Z., G. Li, F. Fioranelli, and H. Griffiths, "Personnel recognition and gait classification based on multistatic micro-Doppler signatures using deep convolutional neural networks," IEEE Geoscience and Remote Sensing Letters, Vol. 15, No. 5, 669-673, 2018.
doi:10.1109/LGRS.2018.2806940
12. Cao, P., W. Xia, M. Ye, J. Zhang, and J. Zhou, "Radar-ID: human identification based on radar micro-Doppler signatures using deep convolutional neural networks," IET Radar Sonar and Navigation, Vol. 12, No. 7, 729-734, 2018.
doi:10.1049/iet-rsn.2017.0511
13. Kang, W., Y. Zhang, and X. Dong, "Polarimetric MDS of pedestrian," Electronics Letters, Vol. 54, No. 17, 1051-1053, 2018.
doi:10.1049/el.2018.0208
14. Kim, B. K., H. Kang, and S. Park, "Experimental analysis of small drone polarimetry based on micro-Doppler signature," IEEE Geoscience and Remote Sensing Letters, Vol. 14, No. 10, 1670-1674, 2017.
doi:10.1109/LGRS.2017.2727824
15., Available at http://download.tensorflow.org/models/inception_v3_2016_08_28.tar.gz/.
doi:10.1109/LGRS.2017.2727824
16. Chen, V. C., The Micro-Doppler Effect in Radar, Artech House, 2011.
17. Li, J., P. Wang, Y. Li, Y. Zhao, X. Liu, and K. Luan, "Transfer learning of pre-trained Inception-v3 model for colorectal cancer lymph node metastasis classification," 2018 IEEE Inter. Conf. on Mechatronics and Automation, 1650-1654, Changchun, China, Aug. 5–8, 2018.
18. Du, L., L. Li, B. Wang, and J. Xiao, "Micro-doppler feature extraction based on time-frequency spectrogram for ground moving targets classification with low-resolution radar," IEEE Sensors Journal, Vol. 16, No. 10, 3756-3763, 2016.
doi:10.1109/JSEN.2016.2538790