Vol. 164
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2019-03-06
Broadband Green’S Function with Higher Order Low Wavenumber Extractions for an Inhomogeneous Waveguide with Irregular Shape
By
Progress In Electromagnetics Research, Vol. 164, 75-95, 2019
Abstract
The method of broadband Green's functions with low wavenumber extractions (BBGFL) is used to calculate Green's function for inhomogeneous waveguides filled with different dielectrics and with irregular boundaries. To construct the BBGFL modal solutions, we derive governing equations of the linear eigen-matrix problem and orthonormalization condition. In BBGFL, the Green's function is represented in modal expansions with convergence accelerated by higher order low wavenumber extractions. To obtain a linear eigenvalue problem for the modes, we use two BBGFLs of rectangular waveguides with two dielectric wavenumbers. The orthonormalized mode functions are used to construct the Green's function. Current wavenumber derivatives and Green's function wavenumber derivatives are computed by a single low wavenumber MoM impedance matrix. The wavenumber derivatives are used to accelerate the convergence of modal summations to 6th order. Numerical results are illustrated and compared with the direct MoM method of using free space Green's function. Results show accuracies and computation efficiencies for broadband simulations of Green's functions.
Citation
Tien-Hao Liao, Kung-Hau Ding, and Leung Tsang, "Broadband Green’S Function with Higher Order Low Wavenumber Extractions for an Inhomogeneous Waveguide with Irregular Shape," Progress In Electromagnetics Research, Vol. 164, 75-95, 2019.
doi:10.2528/PIER18102903
References

1. Tai, C. T., Dyadic Green Functions in Electromagnetic Theory, IEEE Press, 1994.

2. Collin, R. E., Field Theory of Guided Waves, IEEE Press, 1991.

3. Chew, W. C., Waves and Fields in Inhomogeneous Media, IEEE Press, 1995.

4. Tsang, L., J. A. Kong, and K. H. Ding, Scattering of Electromagnetic Waves, Vol. 1: Theory and Applications, Wiley Interscience, 2000.
doi:10.1002/0471224286

5. Tsang, L., J. A. Kong, K. H. Ding, and C. Ao, Scattering of Electromagnetic Waves, Vol. 2, Wiley, 2001.
doi:10.1002/0471224278

6. Conciauro, G., M. Guglielmi, and R. Sorrentino, Advanced Modal Analysis: CAD Techniques for Waveguide Components and Filters, Wiley, 2002.

7. Bozzi, M., L. Perregrini, and K. Wu, "Modeling of conductor, dielectric, and radiation losses in substrate integrated waveguide by the boundary integral-resonant mode expansion method," IEEE Trans. Microw. Theory Tech., Vol. 56, No. 12, 3153-3161, Dec. 2008.
doi:10.1109/TMTT.2008.2007140

8. Arcioni, P., M. Bozzi, M. Bressan, G. Conciauro, and L. Perregrini, "The BI-RME method: An historical overview," 2014 International Conference on Numerical Electromagnetic Modeling and Optimization for RF, Microwave, and Terahertz Applications (NEMO), May 14–16, 2014.

9. Tsang, L. and S. Huang, "Broadband Green's function with low wavenumber extraction for arbitrary shaped waveguide and applications to modeling of vias in finite power/ground plane," Progress In Electromagnetic Research, Vol. 152, 105-125, 2015.
doi:10.2528/PIER15072605

10. Tsang, L. and S. Huang, Full wave modeling and simulations of the waveguide behavior of printed circuit boards using a broadband Green’s function technique, U.S. Patent 62/152 702, Apr. 24, 2015.

11. Huang, S., Broadband Green's function and applications to fast electromagnetic analysis of highspeed interconnects, Ph.D. dissertation, Dept. Elect. Eng., Univ. Washington, Seattle, WA, USA, Jun. 2015.

12. Huang, S. and L. Tsang, "Fast electromagnetic analysis of emissions from printed circuit board using broadband Green’s function method," IEEE Trans. on Electromagnetic Compatibility, Vol. 58, 1642-1652, 2016.
doi:10.1109/TEMC.2016.2565584

13. Huang, S. and L. Tsang, "Fast broadband modelling of traces connecting vias in printed circuit boards using broadband Green’s function method," IEEE Transactions on Components, Packaging and Manufacturing Technology, Vol. 7, No. 8, 1343-1355, Aug. 2017.
doi:10.1109/TCPMT.2017.2691351

14. Liao, T.-H., K.-H. Ding, and L. Tsang, "High order extractions of broadband Green's Function with low wavenumber extractions for arbitrary shaped waveguide," Progress In Electromagnetic Research, Vol. 158, 7-20, 2017.
doi:10.2528/PIER16101003

15. Tsang, L., K.-H. Ding, T.-H. Liao, and S. Huang, "Modeling of scattering in arbitrary-shape waveguide using broadband Green's function with higher order low wavenumber extractions," IEEE Trans. on Electromagnetic Compatibility, Vol. 60, 16-25, 2018.
doi:10.1109/TEMC.2017.2727958

16. Tsang, L., "Broadband calculations of band diagrams in periodic structures using the broadband Green's function with low wavenumber extraction (BBGFL)," Progress In Electromagnetics Research, Vol. 153, 57-68, 2015.
doi:10.2528/PIER15082901

17. Tsang, L. and S. Tan, "Calculations of band diagrams and low frequency dispersion relations of 2D periodic dielectric scattering using broadband Green's function with low wavenumber extraction (BBGFL)," Optics Express, Vol. 24, No. 2, 945-965, 2016.
doi:10.1364/OE.24.000945

18. Tan, S. and L. Tsang, "Green functions, including scatterers, for photonic crystals and metamaterials," Journal of Optical Society of America B, Vol. 34, 1450-1458, 2017.
doi:10.1364/JOSAB.34.001450

19. Tsang, L., K.-H. Ding, and S. Tan, "Broadband point source Green's function in a onedimensional infinite periodic lossless medium based on BBGFL with modal method," Progress In Electromagnetic Research, Vol. 163, 57-77, 2018.

20. Tan, S., Multiple volume scattering in random media and periodic structures with applications in microwave remote sensing and wave functional materials, Ph.D. thesis, University of Michigan, 2016.

21. Chen, P. Y., D. J. Bergman, and Y. Sivan, "Rigorous expansion of electromagnetic Green's tensor of lossy resonators in open systems," Proc. SPIE 10346, Plasmonics: Design, Materials, Fabrication, Characterization, and Applications XV, 103460P, Aug. 25, 2017.

22. Bressan, M., S. Battistutta, M. Bozzi, and L. Perregrini, "Modeling of inhomogeneous and lossy waveguide components by the segmentation technique combined with the calculation of Green's function by Ewald's method," IEEE Transactions on Microwave Theory and Techniques, Vol. 66, 633-642, 2018.
doi:10.1109/TMTT.2017.2787587