Vol. 81
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2019-01-09
Switching-Mode CMOS Power Amplifier Using a Differentially Coupled Series Inductor
By
Progress In Electromagnetics Research Letters, Vol. 81, 59-64, 2019
Abstract
In this work, we propose a compact CMOS power amplifier using a differentially coupled series inductor for motion detection radar applications. The proposed switching-mode power amplifier is designed with a cascode and differential structure. To realize a compact size matching network, a differentially coupled series inductor is used in the input matching network. In the proposed power amplifier, two typical spiral series inductors for the input matching network are replaced with a single differentially coupled series inductor. As a result, the used chip area of the differentially coupled series inductor is smaller than half that of a typical inductor for the given inductances of each inductor. Additionally, to obtain a high gain characteristic, we adapt modified mode-locking techniques for the power stage of the power amplifier. To verify the feasibility of the power amplifier, we design a 9.5-GHz power amplifier with a 130-nm RFCMOS process. We obtain saturation power of 15 dBm while the power-added efficiency is approximately 28%.
Citation
Changhyun Lee, and Changkun Park, "Switching-Mode CMOS Power Amplifier Using a Differentially Coupled Series Inductor," Progress In Electromagnetics Research Letters, Vol. 81, 59-64, 2019.
doi:10.2528/PIERL18102506
References

1. Park, J., C. Lee, and C. Park, "X-band CMOS power amplifier with high efficiency for motion detection radar," Microw. Opt. Technol., Vol. 56, 2552-2557, 2014.
doi:10.1002/mop.28638

2. Yang, J.-R., S. Hong, and D.-W. Kim, "A distance-compensated radar sensor with a sixport network for remote distinction of objects with different dielectric constants," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 11/12, 1429-1437, 2010.
doi:10.1163/156939310792149632

3. Chang, C. H., S. Wang, H. S. Wu, E.-C. Liang, A.-S. Liu, K.-H. Tsai, M.-J. Chiang, P.-J. Yang, Y.- J.Wu, H. Lee, and C.-K. C. Tzuang, "Design of X-band complementary metal-oxide semiconductorbased frequency-modulation continuous-wave sensor," IET Circ. Devices Syst., Vol. 3, 331-339, 2009.
doi:10.1049/iet-cds.2008.0310

4. Haridas, K., T. H. Teo, and X. Yuan, "A 2.4-GHz CMOS power amplifier design for low power wireless sensors network," IEEE International Symposium on Radio-Frequency Integration Technology, 299-302, 2009.
doi:10.1109/RFIT.2009.5383675

5. Lee, J., D.-H. Lee, and S. Hong, "A doherty power amplifier with a GaN MMIC for femtocell base stations," IEEE Microw. Wireless Compon. Lett., Vol. 24, 194-196, 2014.
doi:10.1109/LMWC.2013.2292926

6. Wilk, S. J., W. Lepkowski, and T. J. Thornton, "32 dBm power amplifier on 45 nm SOI CMOS," IEEE Microw. Wireless Compon. Lett., Vol. 23, 161-163, 2013.
doi:10.1109/LMWC.2013.2245413

7. Chen, J.-H., S. R. Helmi, A. Y.-S. Jou, and S. Mohammadi, "A wideband power amplifier in 45 nm CMOS SOI technology for X band applications," IEEE Microw. Wireless Compon. Lett., Vol. 23, 587-589, 2013.
doi:10.1109/LMWC.2013.2279117

8. Lee, G., J. Jung, J. Jang, and J. Song, "A multiband power amplifier using a switch-based reconfigurable matching network for optimized power performance," Microw. Opt. Technol., Vol. 56, 2881-2884, 2014.
doi:10.1002/mop.28730

9. Mohadeskasaei, S. A., F. Lin, X. Zhou, and S. U. Abdullahi, "Novel design theory for high-efficiency and high-linearity microwave power amplifier based on 2nd harmonic: Enhanced class-J," Progress In Electromagnetics Research M, Vol. 57, 103-111, 2017.
doi:10.2528/PIERM17033104

10. Tai, H.-Q., W. Hong, B. Zhang, and X.-M. Yu, "A compact 60W X-band GaN HEMT power amplifier MMIC," IEEE Microw. Wireless Compon. Lett., Vol. 27, 73-75, 2017.
doi:10.1109/LMWC.2016.2630926

11. Lee, H., W. Lim, W. Lee, H. Kang, J. Bae, C.-S. Park, K. C. Hwang, K.-Y. Lee, and Y. Yang, "Compact load network for GaN-HEMT doherty power amplifier IC using left-handed and righthanded transmission lines," IEEE Microw. Wireless Compon. Lett., Vol. 27, 293-295, 2017.
doi:10.1109/LMWC.2017.2661706

12. Zhang, Y. and K. Ma, "A 2–22 GHz CMOS distributed power amplifier with combined artificial transmission lines," IEEE Microw. Wireless Compon. Lett., Vol. 27, 1122-1124, 2017.
doi:10.1109/LMWC.2017.2750416

13. Liu, B., M. Mao, D. Khanna, P. Choi, C. C. Boon, and E. A. Fitzgerald, "A highly efficient fully integrated GaN power amplifier for 5-GHz WLAN 802.11ac application," IEEE Microw. Wireless Compon. Lett., Vol. 28, 437-439, 2018.
doi:10.1109/LMWC.2018.2812107

14. Lee, C., S. Yoon, and C. Park, "A differentially coupled series inductor for differential RFICs," Microw. Opt. Technol., Vol. 57, 2223-2225, 2015.
doi:10.1002/mop.29293

15. Lee, C. and C. Park, "A 2.4-GHz CMOS power amplifier using a gain and stability enhancement technique for IEEE 802.11n WLAN applications," Microw. Opt. Technol., Vol. 58, 2265-2268, 2016.
doi:10.1002/mop.30022

16. Ku, B.-H., S.-H. Baek, and S. Hong, "A X-band CMOS power amplifier with on-chip transmission line transformers," Radio Frequency Integrated Circuits (RFIC) Symp. Dig., 523-526, April 2008.

17. Lu, C., A.-V. H. Pham, M. Shaw, and C. Saint, "Linearization of CMOS broadband power amplifiers through combined multigated transistors and capacitance compensation," IEEE Trans. Microw. Theory Tech., Vol. 55, 2320-2328, 2007.

18. Kim, H. S., K. Y. Kim, W. Y. Kim, Y. S. Noh, I. B. Yom, I. Y. Oh, and C. S. Park, "SiGe MMIC power amplifier with on-chip lineariser for X-band applications," Electron. Lett., Vol. 45, 1036-1037, 2009.
doi:10.1049/el.2009.1973

19. Sewiolo, B., G. Fischer, and R. Weigel, "A 12-GHz high-efficiency tapered traveling-wave power amplifier with novel power matched cascode gain cells using SiGe HBT transistors," IEEE Trans. Microw. Theory Tech., 2329-2336, 2009.
doi:10.1109/TMTT.2009.2029029