Vol. 78
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2019-01-22
Pole-Zero Analysis of Microwave Filters Using Contour Integration Method Exploiting Right-Half Plane
By
Progress In Electromagnetics Research M, Vol. 78, 59-68, 2019
Abstract
This paper presents the pole-zero analysis of microwave filters using contour integration method exploiting right-half plane (RHP). The poles and zeros can be determined with only S21 by exploiting contour integration method on the RHP along with certain S matrix properties. The contour integration in the argument principle is evaluated numerically via the finite-difference method. To locate the poles or zeros, the contour divide and conquer approach is utilized, whereby the contour is divided into smaller sections in stages until the contour enclosing the pole or zero is sufficiently small. The procedures to determine the poles and zeros separately are described in detail with the aid of pseudocodes. To demonstrate the effectiveness of the proposed method, it is applied to determine and analyze the poles and zeros of various microwave filters.
Citation
Eng Leong Tan, and Ding Yu Heh, "Pole-Zero Analysis of Microwave Filters Using Contour Integration Method Exploiting Right-Half Plane," Progress In Electromagnetics Research M, Vol. 78, 59-68, 2019.
doi:10.2528/PIERM18102301
References

1. Pozar, D. M., Microwave Engineering, 4th Ed., Wiley, 2011.

2. Matthaei, G. L., L. Young, and E. M. T. Jones, Microwave Filters, Impedance Matching Network and Coupling Structure, Artech House, 1980.

3. Hong, J. S. and M. J. Lancaster, Microstrip Filter for RF/Microwave Application, 2nd Ed., Wiley, 2011.
doi:10.1002/9780470937297

4. Collin, R. E., Foundations for Microwave Engineering, 2nd Ed., IEEE Press, 2001.
doi:10.1109/9780470544662

5. Cameron, R. J., C. M. Kudsia, and R. R. Mansour, Microwave Filters for Communication Systems, John Wiley and Sons, 2007.

6. Wang, X., Y. Di, P. Gardner, and H. Ghafouri-Shiraz, "Frequency transform synthesis method for cross-coupled resonator bandpass filters," IEEE Microw. Wireless Compon. Lett., Vol. 15, No. 8, 533-535, Aug. 2005.
doi:10.1109/LMWC.2005.852799

7. Liu, A.-S., T.-Y. Huang, and R.-B. Wu, "A dual wideband filter design using frequency mapping and stepped-impedance resonators," IEEE Trans. Microw. Theory Tech., Vol. 56, No. 12, 2921-2929, Dec. 2008.
doi:10.1109/TMTT.2008.2007357

8. Xue, S. J., W. J. Feng, H. T. Zhu, and W. Q. Che, "Microstrip wideband bandpass filter with six transmission zeros using transversal signal-interaction concepts," Progress In Electromagnetics Research C, Vol. 34, 1-12, 2013.
doi:10.2528/PIERC12092814

9. Xu, J. and W. Wu, "Compact microstrip dual-mode dual-band band-pass filters using stubs loaded coupled line," Progress In Electromagnetics Research C, Vol. 41, 137-150, 2013.
doi:10.2528/PIERC13052204

10. Sun, X. and E. L. Tan, "Dual-band filter design with pole-zero distribution in the complex frequency plane," 2016 IEEE MTT-S Int. Microw. Symp. Dig., 2016, doi:10.1109/MWSYM.2016.7540174.

11. Tan, E. L. and D. Y. Heh, "Application of Belevitch theorem for pole-zero analysis of microwave filters with transmission lines and lumped elements," IEEE Trans. Microw. Theory Tech., Vol. 66, No. 11, 4669-4676, Nov. 2018.
doi:10.1109/TMTT.2018.2865928

12. Belevitch, V., Classical Network Theory, Holden-Day, 1968.

13. Ahlfors, L., Complex analysis: An Introduction to the Theory of Analytic Functions of One Complex Variable, McGraw-Hill, 1979.

14. Wong, S. W., K. Wang, Z. Chen, and Q. Chu, "Rotationally symmetric coupled-lines band-pass filter with two transmission zeros," Progress In Electromagnetics Research, Vol. 135, 641-656, 2013.
doi:10.2528/PIER12112405