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Pole-Zero Analysis of Microwave Filters Using Contour Integration
Method Exploiting Right-Half Plane

Eng Leong Tan and Ding Yu Heh*

Abstract—This paper presents the pole-zero analysis of microwave filters using contour integration
method exploiting right-half plane (RHP). The poles and zeros can be determined with only S21 by
exploiting contour integration method on the RHP along with certain S matrix properties. The contour
integration in the argument principle is evaluated numerically via the finite-difference method. To
locate the poles or zeros, the contour divide and conquer approach is utilized, whereby the contour is
divided into smaller sections in stages until the contour enclosing the pole or zero is sufficiently small.
The procedures to determine the poles and zeros separately are described in detail with the aid of
pseudocodes. To demonstrate the effectiveness of the proposed method, it is applied to determine and
analyze the poles and zeros of various microwave filters.

1. INTRODUCTION

Microwave filters [1–9] have been designed, synthesized and analyzed over the years for various
applications. Most analyses in the literature have not considered the poles and zeros of the synthesized
filters on the complex frequency (s) plane. These poles and zeros are often not ascertained thoroughly
after design stages and their locations are commonly deduced vaguely from the plots of S parameters,
which may depict some reflection zeros, etc. Note that the plots of S parameters versus real frequencies
only provide the frequency responses along the jω axis and do not provide sufficient information on the
complex s plane. Furthermore, it is rather difficult to solve for the poles and zeros of filters designed using
transmission line structures, especially when the lines are non-commensurate. This is because the overall
S parameter expressions contain non-polynomial transcendental functions and conventional methods
such as Richard or Euler transformations are inadequate. For filters designed using lumped elements
such as inductors and capacitors, the polynomial coefficients could also be rather ill-conditioned [10].
To alleviate the difficulty and inadequacy, we have proposed the use of contour integration method
based on argument principle to determine the poles and zeros of microwave filters [11]. To include
lossless filters with complex zeros, the Belevitch theorem is applied to separate the poles and zeros in
different half-plane regions. Such separation of poles and zeros involve evaluation of S matrix (Belevitch)
determinant [12]. Using the Belevitch determinant and contour integration method, the poles and zeros
of lossless filter transfer functions can be determined separately with certainty. Note that in [11], the
contour integration method is evaluated on the left-half plane (LHP) only, as one would generally do
since all poles are located on the LHP for stable system.

In this paper, we present an alternative approach for pole-zero analysis using contour integration
method exploiting right-half plane (RHP). The poles and zeros can be determined with only S21 by
exploiting contour integration method on the RHP along with certain S matrix properties. Hence,
there is no need to evaluate the S matrix determinant that involves all its entries S11, S12, S21 and S22.
In Section 2, the argument principle and contour integration method will be discussed. The contour
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integration in the argument principle is evaluated numerically via the finite-difference method. To locate
the poles or zeros, the contour divide and conquer approach will be utilized, whereby the contour is
divided into smaller sections in stages until the contour enclosing the pole or zero is sufficiently small.
The procedures to determine the poles and zeros separately will be described in detail with the aid of
pseudocodes. In Section 3, the proposed method will be applied to determine and analyze the poles
and zeros of various microwave filters.

2. EXPLOITING CONTOUR INTEGRATION METHOD ON THE RIGHT-HALF
PLANE TO DETERMINE POLES AND ZEROS SEPARATELY

2.1. Argument Principle and Contour Integration Method

The argument principle is expressed as [13]∮
C

f ′(z)
f(z)

dz = 2πj (Z − P ) . (1)

where Z and P are the total numbers of zeros and poles for a meromorphic function f(z) within the
closed contour C, including their multiplicities. The contour C is taken in counter-clockwise oriented
path, and f ′(z) is the derivative of the complex function. Applying the argument principle, the complex
function f(z) is replaced by S21(s) of a microwave filter on the complex s plane, where s = σ + jω. The
contour integration of f = S21 can be evaluated numerically via

∮
C

S′
21(s)

S21(s)
ds =

∑
s

{
S21(s + Δs/2)− S21(s−Δs/2)

Δs

}

S21(s)
·Δs

=
∑

s

S21(s + Δs/2)− S21(s−Δs/2)
S21(s)

, (2)

where central finite-differencing is used for the derivative S′
21(s), and Δs is the spatial step size chosen

along the path to ensure convergence. To evaluate the numerical contour integration in Eq. (2), the
overall analytical S21 expression is not required, while only the numerical values of S21 along the contour
path are needed. In practice, for microwave filter circuits, the circuit parameters for individual sections
(such as transmission lines, lumped elements, etc.) can be computed and manipulated readily to obtain
the S21 values of the overall circuits. Note that all the circuit sections are taken to be lossless following
the common practice in the conventional synthesis of microwave filters.

The number of poles for a microwave filter within the contour can be determined from contour
integration method in Eq. (2) if the number of zeros, Z, is known, or vice versa, based on the following:

P =
−1
2πj

∑
s

S21(s + Δs/2)− S21(s−Δs/2)
S21(s)

+ Z, with Z known, (3a)

Z =
1

2πj

∑
s

S21(s + Δs/2)− S21(s−Δs/2)
S21(s)

+ P, with P known. (3b)

Equation (3) is well suited to determine the number of poles or zeros within an enclosed contour path of
interest for microwave filters, especially those with transmission line structures involving non-polynomial
transcendental functions. For common all-pole filters with no zero on the complex s plane, the number
of poles within contour can be determined straightforwardly by evaluating Eq. (3a) and setting Z = 0.
However, for filters with complex zeros, Eq. (3a) is no longer applicable as the argument principle
provides only the difference between the number of poles and zeros within contour C with unknown
number of zeros Z �= 0. To determine the number of poles and zeros, we now exploit contour integration
method on the RHP along with certain S matrix properties. First, all poles must be located on the
LHP and none on the RHP for stable system. Second, the numerator of S21(s) for a lossless filter must
have its zeros, which are either on the imaginary axis or in mirror-image pairs that are symmetrically
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arranged about the imaginary axis on the complex s plane [5]. Hence, if complex zeros exist on the
LHP, they can also be found on the RHP symmetrically located about the jω axis. By evaluating
Eq. (3b) on the RHP and setting P = 0 since there is no pole on RHP for stable system, we are able
to determine the number of zeros on the RHP and LHP due to symmetrically located zeros. With Z
determined, it can now be substituted into Eq. (3a) to determine the number of poles on the LHP. As
such, the poles and zeros can be determined separately with certainty. From (3), we see that only S21

of the filter is needed. There is no need to evaluate the S matrix determinant in [11] that involves all
its matrix entries S11, S12, S21 and S22.

2.2. Contour Divide and Conquer Approach

In the previous subsection, the contour integration method determines the total number of poles and
zeros within the enclosed contour. After finding the total number of poles and zeros, we proceed to
locate them along with their respective order via the contour divide and conquer approach. In this
approach, the contour is to be divided into smaller sections in stages until the contour enclosing the
pole or zero is sufficiently small. In this case, the location of the pole or zero is bounded within a
sufficiently small enclosed contour, and the number of pole or zero represents their respective order.
The procedures of contour divide and conquer approach are better illustrated in Fig. 1. As shown in
the figure, we divide the contour area into four smaller sections (dashed) in each stage successively
before enclosing a pole or zero with specified tolerances. The contour is first applied on the RHP to
find the zeros. They are then flipped about the imaginary (jω) axis to obtain the LHP zeros. Once the
complex zeros are located, the poles can be found readily. In particular, the contour is applied onto the
LHP to find the poles, with known zeros found earlier. Although only one pole or zero is shown here,
the approach in general will arrive at all poles and zeros enclosed within the contour. The procedures
are described in detail with the aid of pseudocodes below. The contour on the RHP is described in
Pseudocode 1, followed by contour on the LHP described in Pseudocode 2.

Figure 1. Illustration of contour divide and conquer approach, first applied on the RHP and then on
the LHP.

Pseudocode 1 — on the RHP:

1. Given a set of contour rectangles Rr
i on the RHP.

2. Compute Eq. (3b) for Zi with Pi = 0. Save only the rectangles {Rr
i } that have Zi > 0. After this

step, each saved {Rr
i } has at least one zero. If none of {Rr

i } is saved, then exit with no zero within
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the given {Rr
i } on the RHP.

3. Initialize Rr
new={ };

4. For each saved {Rr
i },{

4.1 If the {Rr
i } bounds Δωi and Δσi exceed tolerance

{
4.1.1 Divide Rr

i into smaller {Rr
sj}

4.1.2 For each {Rr
sj}

{
4.1.2.1 Compute Eq. (3b) for Zsj with Psj = 0.
4.1.2.2 If Zsj > 0, {Rr

new} ← {Rr
new} ∪ {Rr

sj}, save Zsj .
}

}
4.2 Else
{
4.2.1 {Rr

new} ← {Rr
new} ∪ {Rr

i }, save Zi.
}

}
5. If {Rr

i } �= {Rr
new}, set {Rr

i } = {Rr
new}, loop back to Step 3. Else, exit and go to Step 6.

6. Flip {Rr
i } about jω axis onto LHP, i.e., {Rr

i } ← {−Rr∗
i }, where superscript ∗ indicates complex

conjugate. We have now retrieved all LHP zeros (knowing all Zi’s). Proceed to Pseudocode 2 to
retrieve the poles.

Pseudocode 2 — on the LHP (with known zeros Zi’s from Pseudocode 1):

1. Given a set of contour rectangles {Ri} on the LHP.
2. Compute Eq. (3a) for Pi with known Zi. Save only the rectangles {Ri} that have Pi > 0. After this

step, each saved {Ri} has at least one pole. If none of {Ri} is saved, then exit with no pole within
the given {Ri} on the LHP.

3. Initialize Rnew={ };
4. For each {Ri},
{
4.1 If the {Ri} bounds Δωi and Δσi exceed tolerance
{
4.1.1 Divide Ri into smaller {Rsj}
4.1.2 For each {Rsj}

{
4.1.2.1 Compute Eq. (3a) for Psj with known Zsj.
4.1.2.2 If Psj > 0, {Rnew} ← {Rnew} ∪ {Rsj}, save Psj.
}

}
4.2 Else
{
4.2.1 {Rnew} ← {Rnew} ∪ {Ri}, save Pi.
}

}
5. If {Ri} �= {Rnew}, set {Ri} = {Rnew}, loop back to Step 3. Else, exit.

At the end of the algorithm, rectangles {Ri} and {Rr
i } contain poles and zeros that are enclosed

within the specified tolerances, along with the associated number of poles Pi and zeros Zi within. The
location of poles and zeros may be taken as the centre of rectangles Ri and Rr

i with tolerances ±Δωtol

and ±Δσtol. Their orders are determined by the number of poles Pi and Zi within. In the event that
the contour path crosses or passes near the pole at any stage, the numerical integration in Eq. (2) would
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yield excessively large value or deviate very much from integer of 2πj. To circumvent this, the contour
path at any stage is readjusted ±Δω or ±Δσ until Eq. (2) is evaluated to be sufficiently close to integer
of 2πj. In doing so, proper convergence of the contour in locating all poles and zeros is ensured. Note
that the computational burden of our contour integration method depends only on the (one-dimensional)
contour path length for which Eq. (2) is to be evaluated, as compared to the (two-dimensional) area
search of complex roots that would be much more expensive in general.

3. APPLICATION EXAMPLES

The contour integration method is now applied to solve for poles and zeros of microwave filters. We
first look at an example of classical coupled line filter [1]. The layout of coupled line filter comprising
N + 1 sections with even and odd characteristic impedances in each individual section is shown in
Fig. 2(a). The filter specification is Butterworth response with N = 3, center frequency f0 = 2 GHz and
fractional bandwidth FBW = 0.15. The filter response can be determined by computing the overall
ABCD parameters from individual sections which are subsequently converted into S parameters using
standard formula. The S parameters are plotted in Fig. 2(b), in which one reflection zero is seen in the
S11 plot for N = 3. One can see that the number of reflection zeros does not commensurate with the
order of the filter. Hence, the filter order cannot be inferred directly from the number of sections or
reflection zeros. To analyze the poles, the contour integration method is employed, and the poles of the
filter are plotted in Fig. 3. To verify its Butterworth response, a reference Butterworth circle is shown,
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Figure 2. (a) Layout of the N + 1 sections coupled line filter. (b) S parameters of coupled line filter
with Butterworth response N = 3 and N = 5.
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Figure 3. Poles of Butterworth response coupled line filter with N = 3.

with radius R scaled to f0 and FBW as

R =
f0FBW

2
. (4)

One can see that three poles are distributed along the reference Butterworth circle, which validates
its Butterworth response. However, there are also additional two poles located further away from the
circle and jω axis. One should take note that although located further away from the jω axis, these
additional poles may still contribute to errors in the real and imaginary parts of S21 [11].

We next proceed to analyze the Buttwerworth response coupled line filter with N = 5. The S
parameters are shown in Fig. 2(b) and the poles are plotted in Fig. 4. From the figure, one can observe
that apart from the additional two poles now moving closer to the circle, the five poles for N = 5 have
deviated from the reference circle. Using contour integration method, we demonstrate that the poles
of a synthesized filter may deviate from the originally specified ones. This also explains why the S11

plot of the Butterworth response filter in Fig. 2(b) exhibits three reflection zeros, since the poles have
deviated from the reference Butterworth circle.

Figure 4. Poles of Butterworth response coupled line filter with N = 5.

We now illustrate an example of using contour integration to locate the poles and zeros of a bandpass
cross coupled filter in [6]. The cross coupled filter is specified as seventh-order Chebyshev response with
passband ripple LAr = 0.1 dB and passband edges 0.79 to 0.81 GHz. The schematic of the filter is shown
in Fig. 5, which consists of mutually coupled resonators with given coupling coefficients. Fig. 6(a) shows
the S parameters of the cross coupled filter. Exploiting contour integration method on the RHP, the
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Figure 5. Schematic of cross coupled filter.
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Figure 6. (a) S parameters of cross coupled filter. (b) Poles and zeros of cross coupled filter and
reference Chebyshev ellipse.

poles and zeros of the filter are determined and plotted in Fig. 6(b). It can be observed that seven
poles are visible within the passband. To verify its Chebyshev response, a reference Chebyshev ellipse
is drawn, with major and minor radii, a and b (scaled to f0 and FBW in R) given by [3]

a = R
√

1 + η2, b = Rη (5)

where

η = sinh
(

1
N

sinh−1 1
E

)
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E =
√

10
LAr
10 − 1.

We see that the poles are distributed along the reference Chebyshev ellipse, which validates its
Chebyshev response. Moreover, there is a pair of symmetrical complex zero at around ±0.01+ j0.8 GHz
about the jω axis. This further shows the effectiveness of our proposed method in retrieving both poles
and zeros on the complex plane.

So far we have applied the contour integration method to locate the poles and zeros of single band
filters, we shall now illustrate its application to dual band (or multiband) filters. We use the example
of test filter 1 from [7], whereby two passbands range from 0.96 to 1.6 GHz and 2.02 to 2.68 GHz with
seventh-order Chebyshev response and passband ripples LAr = 0.01 dB. The schematic of the dual
band filter is shown in Fig. 7, comprising non-commensurate transmission lines with predetermined
characteristic impedances and electrical lengths. The S parameters are shown in Fig. 8(a), including
the measurement results from [7]. The contour integration method is then applied to determine the

Figure 7. Schematic of dual band filter.
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Figure 8. (a) S parameters of dual band filter. (b) Poles for dual band filter and reference Chebyshev
ellipse.
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Figure 9. Poles for quarter wavelength short-circuited stubs and reference Chebyshev ellipse.

poles within each passband. Fig. 8(b) plots the poles location on the complex s plane. Seven poles
are found in each passband, which confirms its seventh-order characteristics. To verify its Chebyshev
response, a reference Chebyshev ellipse is also drawn for each band. In this case, it can be seen that
although the dual band filter is originally designed according to the given specifications, some poles have
deviated from the reference Chebyshev ellipse after realization. To investigate such deviation further,
let us examine the poles of quarter-wave short-circuited stubs that constitute the dual band filter. The
parameters of the short-circuited stubs are given in [7, Table I]. Fig. 9 plots the poles for the short-
circuited stubs and reference Chebyshev ellipse. It can be seen that the poles have actually deviated
from the reference Chebyshev ellipse. Hence, they may explain the deviation of the poles in Fig. 8(b).
Thus, the realized poles should be ascertained for further adjustment and tuning if necessary. Through
these examples, we have demonstrated the usefulness of the contour integration method in determining
the poles and zeros of microwave filters. Finally, it should be noted that the contour integration method
herein is applicable not only to microwaves but also to other frequencies such as mmW, sub-THz,
etc. [14].

4. CONCLUSION

This paper has presented the pole-zero analysis of microwave filters using contour integration method
exploiting RHP. The poles and zeros can be determined with only S21 by exploiting contour integration
method on the RHP along with certain S matrix properties. The contour integration in the argument
principle has been evaluated numerically via the finite-difference method. To locate the poles or zeros,
the contour divide and conquer approach has been utilized, whereby the contour is divided into smaller
sections in stages until the contour enclosing the pole or zero is sufficiently small. The procedures to
separately determine the poles and zeros have been described in detail with the aid of pseudocodes. To
demonstrate the effectiveness of the proposed method, it has been applied to determine and analyze the
poles and zeros of various microwave filters.
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