Vol. 80
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2018-12-14
Compact Quad-Channel Diplexer Using Defected Stepped Impedance Resonators
By
Progress In Electromagnetics Research Letters, Vol. 80, 127-133, 2018
Abstract
This paper proposes a new compact quad-channel diplexer (2.45/4.2 GHz and 3.5/5.2 GHz) using defected stepped impedance resonators (DSIRs). The proposed quad-channel diplexer is composed of one common input feeding line, sixteen folded DSIRs, and two output feeding lines. Every four DSIRs are designed to determine passband characteristics of one individual channel, and two passbands are filtered out eventually at each output port. The distributed coupling technique featured by small loading effect is introduced to eliminate the necessity of extra impedance matching networks, which consequently results in a reduced circuit size. A diplexer prototype operated at 2.45/4.2 GHz and 3.5/5.2 GHz bands with measured 3-dB fractional bandwidths of 12.5%, 7.2%, 6.4%, and 5.0% has been implemented, showing a high isolation of larger than 33 dB between the two output ports. Experimental results coincide well with the theoretical predictions and simulation results.
Citation
Anfu Zhu, Haidong Zhou, Jianzhong Chen, and Jianxing Li, "Compact Quad-Channel Diplexer Using Defected Stepped Impedance Resonators," Progress In Electromagnetics Research Letters, Vol. 80, 127-133, 2018.
doi:10.2528/PIERL18100701
References

1. Pozar, D. M., Microwave Engineering, John Wiley & Sons, 1998.

2. Yang, T., P. L. Chi, and T. Itoh, "High isolation and compact diplexer using the hybrid resonators," IEEE Microwave Wireless Compon. Lett., Vol. 20, No. 10, 551-3, 2010.
doi:10.1109/LMWC.2010.2052793

3. Shi, J., J.-X. Chen, and Z.-H. Bao, "Diplexers based on microstrip line resonators with loaded elements," Progress In Electromagnetics Research, Vol. 115, 423-439, 2011.
doi:10.2528/PIER11031516

4. Chen, C. F., T. Y. Huang, C. P. Chou, and R. B. Wu, "Microstrip diplexers design with common resonator sections for compact size, but high isolation," IEEE Trans. Microwave Theory Tech., Vol. 54, No. 5, 1945-52, 2006.
doi:10.1109/TMTT.2006.873613

5. Chuang, M. L. and M. T. Wu, "Microstrip diplexer design using common T-shaped resonator," IEEE Microwave Wireless Compon. Lett., Vol. 21, No. 11, 583-5, 2011.
doi:10.1109/LMWC.2011.2168949

6. Hong, S. and K. Chang, "A 10-35-GHz six-channel microstrip multiplexer for wide-band communication systems," IEEE Trans. Microwave Theory Tech., Vol. 54, No. 4, 1370-8, 2006.
doi:10.1109/TMTT.2006.871912

7. Makimoto, M. and S. Yamashita, "Bandpass filters using parallel coupled stripline stepped impedance resonators," IEEE Trans. Microwave Theory Tech., Vol. 28, No. 12, 1413-7, 1980.
doi:10.1109/TMTT.1980.1130258

8. Wei, F., P. Y. Qin, Y. J. Guo, and X. W. Shi, "Design of multi-band bandpass filters based on stub loaded stepped-impedance resonator with defected microstrip structure," IET Microw. Antennas Propag., Vol. 10, No. 2, 230-6, 2016.
doi:10.1049/iet-map.2015.0495

9. Ai, J., Y. H. Zhang, K. D. Xu, D. T. Li, and Q. H. Liu, "Design of a high-selectivity quad-band bandpass filter based on λ/4 resonators with alternative J/K inverters," Int. J. Electron. Commun., Vol. 70, No. 8, 1028-33, 2016.
doi:10.1016/j.aeue.2016.04.019

10. Wu, H. W., S. H. Huang, and Y. F. Chen, "Design of new quad-channel diplexer with compact circuit size," IEEE Microwave Wireless Compon. Lett., Vol. 23, No. 5, 240-2, 2013.
doi:10.1109/LMWC.2013.2253314

11. Hsu, K. W., W. C. Hung, and W. H. Tu, "Design of four-channel diplexer using distributed coupling technique," Microwave Opt. Technol. Lett., Vol. 58, No. 1, 166-70, 2016.
doi:10.1002/mop.29516

12. Tu, W. H. and W. C. Hung, "Microstrip eight-channel diplexer with wide stopband," IEEE Microwave Wireless Compon. Lett., Vol. 24, No. 11, 742-4, 2014.
doi:10.1109/LMWC.2014.2348499

13. Deepak, U., T. K. Roshna, C. M. Nijas, K. Vasudevan, and P. Mohanan, "A dual band SIR coupled dipole antenna for 2.4/5.2/5.8 GHz applications," IEEE Trans. Antennas Propag., Vol. 63, No. 4, 1514-20, 2015.
doi:10.1109/TAP.2015.2393876

14. Sagawa, M., M. Makimoto, and S. Yamashita, "Geometrical structures and fundamental characteristics of microwave stepped-impedance resonators," IEEE Trans. Microwave Theory Tech., Vol. 45, No. 7, 1078-85, 1997.
doi:10.1109/22.598444

15. Liu, H. W., W. Y. Xu, Z. C. Zhang, and X. H. Guan, "Compact diplexer using slotline stepped impedance resonator," IEEE Microw. Wireless Compon. Lett., Vol. 23, No. 2, 75-7, 2013.
doi:10.1109/LMWC.2013.2238912

16. Wen, P. H., C. I. G. Hsu, C. H. Lee, and H. H. Chen, "Design of balanced and balun diplexers using stepped-impedance slot-line resonator," J. Electromagn. Waves Appl., Vol. 28, No. 6, 700-15, 2014.
doi:10.1080/09205071.2014.885398

17. Hong, J. S. and M. J. Lancaster, Microstrip Filters for RF/Microwave Applications, John Wiley & Sons, 2001.
doi:10.1002/0471221619

18. Li, Z.-P., L.-J. Zhang, T. Su, and C.-H. Liang, "A compact microstrip quadruplexer using slotline stepped impedance stub loaded resonators," Progress In Electromagnetics Research, Vol. 140, 509-522, 2013.
doi:10.2528/PIER13042105