Vol. 84
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2019-05-13
Image Intensity of a Gaussian Rough-Surface in Atmospheric Turbulence
By
Progress In Electromagnetics Research Letters, Vol. 84, 47-52, 2019
Abstract
Based on Huygens-Fresnel principle, a general expression for the average image intensity of a heterodyne and a direct-detection imaging system in turbulent media is derived under the assumption of a Gaussian rough-surface model. From the formulation, we find that the object size, turbulence strength, wavelength, and object roughness affect image intensity dramatically in the image plane.
Citation
Ning-Jing Xiang, Xin-Fang Wang, and Qun-Feng Dong, "Image Intensity of a Gaussian Rough-Surface in Atmospheric Turbulence," Progress In Electromagnetics Research Letters, Vol. 84, 47-52, 2019.
doi:10.2528/PIERL18092005
References

1. Ishimaru, A., "Limitation on image resolution imposed by a random medium," Applied Optics, Vol. 17, No. 3, 348-352, 1978.
doi:10.1364/AO.17.000348

2. Mahajan, V. N. and K. C. Byron, "Imaging through atmospheric turbulence with annular pupils," Applied Optics, Vol. 20, No. 18, 3233-3237, 1981.
doi:10.1364/AO.20.003233

3. Sutton, G. W., "Effect of inhomogeneous turbulence on imaging through turbulent layers," Applied Optics, Vol. 33, No. 18, 3972-3976, 1994.
doi:10.1364/AO.33.003972

4. Gal, R. and N. Kiryati, "Progress in the restoration of image sequences degraded by atmospheric turbulence," Pattern Recognition Letters, Vol. 48, 8-14, 2014.
doi:10.1016/j.patrec.2014.04.007

5. Cui, L., X. Cao, and F. Zhou, "Influence of moderate-to-strong non-Kolmogorov turbulence on the imaging system by atmospheric turbulence MTF," Optik, Vol. 126, No. 2, 191-198, 2015.
doi:10.1016/j.ijleo.2014.08.147

6. Fante, R. L., "Some results on the imaging of incoherent sources through turbulence," J. Opt. Soc. Am. A, Vol. 66, No. 6, 574-580, 1976.
doi:10.1364/JOSA.66.000574

7. Yang, C. C., B. H. Elsebelgy, and M. A. Plonus, "Imaging after double passage through a turbulent medium," Optics Letters, Vol. 18, No. 24, 2087, 1993.
doi:10.1364/OL.18.002087

8. Wang, S. J. and M. A. Plonus, "Imaging through turbulence: Degradation of signal-to-noise ratio," Optics Communications, Vol. 50, No. 2, 73-78, 1984.
doi:10.1016/0030-4018(84)90139-1

9. Idell, P. S. and A. Webster, "Resolution limits for coherent optical imaging: Signal-to-noise analysis in the spatial-frequency," J. Opt. Soc. Am. A, Vol. 9, 43-56, 1992.
doi:10.1364/JOSAA.9.000043

10. Beavers, W. I., D. E. Dudgeon, and J. W. Beletic, "Speckle imaging through the atmosphere," The Lincoln laboratory Journal, Vol. 2, 207-228, 1989.

11. Ayers, G. R., M. J. Northcott, and J. C. Dainty, "Konx-thompson and triple correlation imaging through atmospheric turbulence," J. Opt. Soc. Am. A, Vol. 5, 963-985, 1988.
doi:10.1364/JOSAA.5.000963

12. Fante, R. L., "Imaging of an object behind a random phase screen using light of arbitrary coherence: Reply to comment," J. Opt. Soc. Am. A, Vol. 5, 265-269, 1988.
doi:10.1364/JOSAA.5.000265

13. Mavroidis, T., C. J. Solomon, and J. C. Dainty, "Imaging a coherently illuminated object after double passage through a random screen," J. Opt. Soc. Am. A, Vol. 8, 1003-1013, 1991.
doi:10.1364/JOSAA.8.001003

14. Goudail, F., "Comparison of maximal achievable contrast in scalar, Stokes, and Mueller images," Opt. Lett., Vol. 35, 2600-2602, 2010.
doi:10.1364/OL.35.002600

15. Goudail, F. and J. Tyo, "When is polarimetric imaging preferable to intensity imaging for target detection?," J. Opt. Soc. Am. A, Vol. 28, 46-53, 2011.
doi:10.1364/JOSAA.28.000046

16. Belenkii, M. S., V. V. Boronoev, and N. T. Gomboev, "Curvature of the average phase-front of a laser beam in a turbulent atmosphere: An experimental steudy," Opt. Spectrosc, Vol. 49, 324-327, 1980.

17. Lutomirski, R. and H. Yura, "Wave structure function and mutual coherence function of an optical wave in a turbulent atmosphere," J. Opt. Soc. Am. A, Vol. 61, 482-487, 1971.
doi:10.1364/JOSA.61.000482

18. Andrews, L. C. and R. L. Phillips, Laser Beam Propagation through Random Media, SPIE Press, 2005.
doi:10.1117/3.626196

19. Yang, C. C., B. H. Elsebelgy, and M. A. Plonus, "Imaging after double passage through a turbulent medium," Opt. Lett., Vol. 18, 2087-2089, 1993.
doi:10.1364/OL.18.002087