Vol. 80
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2018-11-10
Microwave Attenuation and Phase Rotation by Ellipsoidal Dust Particles
By
Progress In Electromagnetics Research Letters, Vol. 80, 7-14, 2018
Abstract
Electromagnetic wave propagation suffers attenuation and phase rotation by suspended dust particles especially in arid and semi-arid regions where occurrence of sand and dust storms (SDS) is predominant. The SDS phenomenon has received considerable interest in recent times with emphasis on signal attenuation and phase rotation effects. To this end, mathematical models of dust induced complex scattering are developed and proposed in this paper using Rayleigh method to compute attenuation and phase rotation of electromagnetic waves by considering dust particle shapes and best fit ellipsoids. This work also presents a new expression for the relation between visibility and dust concentration. The expression was included in the proposed models whose simulated results, compared with some published results, show close agreement. Attenuation and phase rotation in dry dust are found to be significant only when visibility becomes severe or at increased microwave bands.
Citation
Abdulwaheed Musa, and Babu S. Paul, "Microwave Attenuation and Phase Rotation by Ellipsoidal Dust Particles," Progress In Electromagnetics Research Letters, Vol. 80, 7-14, 2018.
doi:10.2528/PIERL18091703
References

1. Bashir, S. O. and N. J. McEwan, "A novel measurement method of a single dust particle permittivity at a microwave frequency band as I/P to accurate scattering computations. Part I," Radioelectronics and Communications Systems, Vol. 55, No. 4, 178-185, 2012.
doi:10.3103/S0735272712040061

2. Musa, A., S. O. Bashir, and A. H. Abdalla, "Review and assessment of electromagnetic wave propagation in sand and dust storms at microwave and millimeter wave bands - Part I," Progress In Electromagnetics Research M, Vol. 40, 91-100, 2014.
doi:10.2528/PIERM14102904

3. Dong, Q., L. Wang, L. Yingle, M. Wang, X. Jiadong, and B. Wang, "Effect of charged sand particles on microwave propagation along earth-space paths," International Conference on Remote Sensing, Environment and Transportation Engineering, 681-684, 2013.

4. Chiou, M. M. and J. F. Kiang, "Attenuation of millimeter-wave in a sand and dust storm," IEEE Geosci. Remote Sens. Lett., Vol. 13, No. 8, 1094-1098, 2016.
doi:10.1109/LGRS.2016.2566799

5. Dou, X. Q. and L. Xie, "Electromagnetic wave attenuation due to the charged particles in dust & sand storms," Journal of Quantitative Spectroscopy & Radiative Transfer, Vol. 196, 169-175, 2017.
doi:10.1016/j.jqsrt.2017.04.005

6. Musa, A., S. O. Bashir, and A. H. Abdalla, "Review and assessment of electromagnetic wave propagation in sand and dust storms at microwave and millimeter wave bands - Part II," Progress In Electromagnetics Research M, Vol. 40, 101-110, 2014.
doi:10.2528/PIERM14102903

7. Sharif, S. M., "Dust storms properties related to microwave signal propagation," University of Khartoum Engineering Journal (UofKEJ), Vol. 1, No. 1, 1-9, 2011.

8. Goldhirsh, J., "Attenuation and backscatter from a derived two-dimensional duststorm model," IEEE Transactions on Antennas and Propagation, Vol. 49, No. 12, 1703-1711, 2001.
doi:10.1109/8.982449

9. Chepil, W. S. and N. P. Woodruff, "Sedimentary characterisation of duststorms: II - Visibility and dust concentration," American Journal Sci., Vol. 255, 1974.

10. Ghobrial, S. and S. Sharief, "Microwave attenuation and cross polarization in dust storms," IEEE Transactions on Antennas and Propagation, Vol. 35, 418-425, 1987.
doi:10.1109/TAP.1987.1144120

11. Chen, H. Y. and C. Ku, "Microwave and millimeter wave attenuation in sand and dust storms," International Conference on Microwave, Radar and Wireless Communication, 527-532, IEEE, Warsaw, Poland, 2012.

12. Ahmed, A. S., "Role of particle-size distributions on millimeter-wave propagation in sand/duststorms," Inst. Electr. Eng. Proceedings, Vol. 134, 55-59, 1987.

13. Van de Hulst, H. C., Light Scattering by Small Particles, John Wiley and Sons, (reprinted Dover Publications, Inc., New York 1981), 1981.

14. Alhaider, M. A., "Radio wave propagation into sandstorms system design based on ten-years visibility data in Riyadh Saudi Arabia," Int.J. Inf. Millim. Waves, Vol. 7, 1339-1359, 1986.
doi:10.1007/BF01012054

15. Dong, X. Y. and H. Y. Chen, "Microwave and millimeter wave attenuation in sand and dust storms," IEEE Antennas Wireless Propagation Lett., Vol. 10, 469-471, 2011.
doi:10.1109/LAWP.2011.2154374

16. Ippolito, L. J., Satellite Communications Systems Engineering, John Wiley & Sons, Ltd., 2008.
doi:10.1002/9780470754443