Vol. 75
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2018-11-01
Design and Analysis of Compact Single and Dual Notch Ultra Wideband Bandpass Filter
By
Progress In Electromagnetics Research M, Vol. 75, 91-102, 2018
Abstract
This paper presents single and dual notch ultra-wideband bandpass filters (UWB BPFs) to mitigate interference with coexisting wireless communication systems in ultra-wideband (UWB). The single and dual notch UWB BPF is developed by using signal interaction concept loaded with stub loaded resonator. The stub loaded resonator creates notches in the passband to avoid the interference with coexisting wireless communication systems. The notch frequency can be placed at the points of interest within passband by selecting a proper length of stub loaded resonator. Transmission zeros are introduced to enhance the selectivity of stopband. It presents UWB BPF with single notch at the frequency of 6.5 GHz and dual notch at the frequencies of 6.3 GHz and 8.0 GHz. The circuit size of proposed filters is 6 mm x 6 mm and 6 mm x 6 mm. The proposed filters exhibit good performance in terms of compact size, good fractional bandwidth and sharp selectivity. All the filters are simulated and fabricated on a Rogers R03010 substrate with relative permittivity of 10.2 and thickness of 1.28 mm. There is good agreement between simulated and measured results.
Citation
Madhu Gandamalla, Dushyant Marathe, and Kishore Kulat, "Design and Analysis of Compact Single and Dual Notch Ultra Wideband Bandpass Filter," Progress In Electromagnetics Research M, Vol. 75, 91-102, 2018.
doi:10.2528/PIERM18080705
References

1. Mahttei, G., L. Young, and E. M. T. Jones, Microwave Filters, Impedance Matching Networks and Coupling Structure, Artech House, Norwood, MA, 1980.

2. Federal Communications Commission "Revision of part 15 of the commission’s rules regarding ultra-wideband transmission systems,", Tech. Rep., ET-Docket 98153, FCC02-48, Apr. 2002.

3. Zhu, L., S. Sun, and W. Menzel, "Ultra-wideband (UWB) bandpass filters using multiple-mode resonator," IEEE Microwave and Wireless Components Letters, Vol. 15, No. 11, 796-798, Nov. 2005.

4. Feng, W., W. Che, and Q. Xue, "Compact ultra-wideband bandpass filters with narrow notched bands based on a ring resonator," IET Microwaves, Antennas & Propagation, Vol. 7, No. 12, 961-969, Sept. 17, 2013.
doi:10.1049/iet-map.2013.0061

5. Sarkar, P., R. Ghatak, M. Pal, and D. R. Poddar, "High-selective compact UWB bandpass filter with dual notch bands," IEEE Microwave and Wireless Components Letters, Vol. 24, No. 7, 448-450, Jul. 2014.
doi:10.1109/LMWC.2014.2316214

6. Deng, H. W., Y. Zhao, Y. He, S. L. Jia, and M. Wang, "Compact dual-notched balanced UWB BPF with folded triple-mode slotline resonator," Electronics Letters, Vol. 50, No. 6, 447-449, Mar. 13, 2014.
doi:10.1049/el.2013.4263

7. Lee, C. H., C. I. G. Hsu, and C. J. Chen, "Band-notched balanced UWB BPF with stepped-impedance slotline multi-mode resonator," IEEE Microwave and Wireless Components Letters, Vol. 22, No. 4, 182-184, Apr. 2012.
doi:10.1109/LMWC.2012.2188019

8. Mirzaee, M. and B. S. Virdee, "UWB bandpass filter with notch-band based on transversal signal-interaction concepts," Electronics Letters, Vol. 49, No. 6, 399-401, Mar. 14, 2013.
doi:10.1049/el.2012.4203

9. Hong, J. S. and M. J. Lancaster, Microwave Filters for RF/Microwave Applications, John Wiley & Sons, New York, 2001.
doi:10.1002/0471221619

10. Sarkar, P., B. V. Koti Reddy, M. Pal, and R. Ghatak, "UWB bandpass filter with broad notch band and ultra-wide upper stopband," IEEE MTT-S International Microwave and RF Conference, 1-3, New Delhi, 2013.

11. Pirani, S., J. Nourinia, and C. Ghobadi, "Band-notched UWB BPF design using parasitic coupled line," IEEE Microwave and Wireless Components Letters, Vol. 20, No. 8, 444-446, Aug. 2010.
doi:10.1109/LMWC.2010.2049830

12. Xu, W., W. Kang, and C. Miao, "Compact UWB bandpass filter with a notched band using radial stub loaded resonator," IEEE Microwave and Wireless Components Letters, Vol. 22, No. 7, 351-353, Jul. 2012.
doi:10.1109/LMWC.2012.2201930

13. Xu, J., W. Kang, C. Miao, and W. Wu, "Sharp rejection UWB bandpass filter with notched band," Electronics Letters, Vol. 48, No. 16, 1005-1006, Aug. 2, 2012.
doi:10.1049/el.2012.0610

14. Li, J., C. Ding, F. Wei, and X. Wei Shi, "Compact UWB BPF with notch band based on SW-HMSIW," Electronics Letters, Vol. 51, No. 17, 1338-1339, Aug. 20, 2015.
doi:10.1049/el.2015.0449

15. Song, Y., G. M. Yang, and W. Geyi, "Compact UWB bandpass filter with dual notched bands using defected ground structures," IEEE Microwave and Wireless Components Letters, Vol. 24, No. 4, 230-232, Apr. 2014.
doi:10.1109/LMWC.2013.2296291

16. Luo, X., J. G. Ma, K. S. Yeo, and E. P. Li, "Compact ultra-wideband (UWB) bandpass filter with ultra-narrow dual- and quad-notched bands," IEEE Transactions on Microwave Theory and Techniques, Vol. 59, No. 6, 1509-1519, Jun. 2011.
doi:10.1109/TMTT.2011.2116800

17. Sarkar, P., R. Ghatak, M. Pal, and D. R. Poddar, "Compact UWB bandpass filter with dual notch bands using open circuited stubs," IEEE Microwave and Wireless Components Letters, Vol. 22, No. 9, 453-455, Sep. 2012.
doi:10.1109/LMWC.2012.2210395

18. Zhao, J., J. Wang, G. Zhang, and J. L. Li, "Compact microstrip UWB bandpass filter with dual notched bands using E-shaped resonator," IEEE Microwave and Wireless Components Letters, Vol. 23, No. 12, 638-640, Dec. 2013.
doi:10.1109/LMWC.2013.2283873