Vol. 72
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2018-08-17
Numerical Modeling of Electromagnetic Field Exposure from 5G Mobile Communications at 10 GHz
By
Progress In Electromagnetics Research M, Vol. 72, 61-67, 2018
Abstract
Study on the interactions between electromagnetic fields and biological tissue at high frequency band is an important aspect in the area of wireless communications. The use of millimeterwave frequency band for fifth Generation (5G) devises involves new challenges in terms of Radio Frequency Electromagnetic Field Exposure (RF-EMF) limits and compliance assessment since the basic restrictions for limiting human exposure change from the Specific Absorption Rate (SAR) to the power density. The Electromagnetic Field Exposure to the human head has been studied based on power density by means of numerical simulation for the frequency band of 10 GHz. Study on radio frequency energy absorption has been done based on radiation from a printed monopole antenna at frequency of 10 GHz, transmitting directly towards the human head tissue model. Human head model is constructed from magnetic resonance images with frequency dependent tissue electrical properties. It is shown that at millimeter wave frequency, i.e. 10 GHz, with realistic source (20 mW) and head-source separation distance (10 mm), the amount of power density is in the range of regulatory limits and requirements on EMF exposure. The obtained results might provide valuable information for the design of 5G handheld devices and EMF compliance assessment.
Citation
Kamya Yekeh Yazdandoost, and Ilkka Laakso, "Numerical Modeling of Electromagnetic Field Exposure from 5G Mobile Communications at 10 GHz ," Progress In Electromagnetics Research M, Vol. 72, 61-67, 2018.
doi:10.2528/PIERM18070503
References

1. Wunder, G., H. Boche, T. Strohmer, and P. Jung, "Sparse signal processing concepts for efficient 5g system design," IEEE Access, Vol. 3, 195-208, Mar. 2015.
doi:10.1109/ACCESS.2015.2407194

2. Tullberg, H., P. Popovski, Z. Li, et al. "The METIS 5G system concept: Meeting the 5G requirements," IEEE Commun. Mag., Vol. 54, No. 12, 132-139, Dec. 2016.
doi:10.1109/MCOM.2016.1500799CM

3. Daniels, R. C. and R. W. Heath, "60 GHz wireless communications: Emerging requirements and design recommendations," IEEE Veh. Technol. Mag., Vol. 2, No. 3, 41-50, Feb. 2008.
doi:10.1109/MVT.2008.915320

4. Bahramzy, P., S. Svendsen, O. Jagielski, and G. Frølund Pedersen, "SAR study of mobile phones as a function of antenna Q," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 9, 4139-4147, 2015.
doi:10.1109/TAP.2015.2452959

5. Lazarescu, C., I. Nica, and V. David, "SAR in human head due to mobile phone exposure," 2011 E-Health and Bioengineering Conference (EHB), 1-4, 2011.

6. Chen, I.-F., C.-M. Peng, and C.-C. Hung, "Experimental study of estimating SAR values for mobile phone applications," 2008 IEEE Antennas and Propagation Society International Symposium, 1-4, 2008.

7. Mihai, G., A. Marian Aron, V. Haralambie, and A. Paljanos, "A study of mobile phone SAR levels modification in different experimental configurations under 2G and 3G communication standards," 2016 International Conference on Communications (COMM), 491-494, 2016.
doi:10.1109/ICComm.2016.7528294

8. Takei, R., T. Nagaoka, K. Saito, S. Watanabe, and M. Takahashi, "SAR variation due to exposure from a smartphone held at various positions near the torso," IEEE Transactions on Electromagnetic Compatibility, Vol. 59, No. 2, 747-753, 2017.
doi:10.1109/TEMC.2016.2642201

9. Cihangir, A., C. J. Panagamuwa, W. G. Whittow, G. Jacquemod, F. Gianesello, R. Pilard, and C. Luxey, "Dual-band 4G eyewear antenna and SAR implications," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 4, 2085-2089, 2017.
doi:10.1109/TAP.2017.2670562

10. Derat, B., "Experimental study on the relationship between specific absorption rate and RF conducted power for LTE wireless devices," 2015 European Microwave Conference (EuMC), 746-748, 2015.
doi:10.1109/EuMC.2015.7345871

11. Oliveira, C., M. Mackowiak, and L. M. Correia, "Exposure assessment of smartphones and tablets," 2015 International Symposium on Wireless Communication Systems (ISWCS), 436-440, 2015.
doi:10.1109/ISWCS.2015.7454380

12. International Commission on Non-Ionizing Radiation Protection, Health Physics "Guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz)," Health Phys., Vol. 74, No. 4, 494-522, 1998.

13. FCC "Code of Federal Regulations CFR title 47, part 1.1310,", 2010.

14. "Standard for safety levels with respect to human exposure to radio frequency electromagnetic fields, 3 kHz to 300 GHz,", IEEE C95.1, 2005.

15. Hong, W., "Solving the 5G mobile antenna puzzle: Assessing future directions for the 5G mobile antenna paradigm shift," IEEE Micro. Mag., Vol. 18, No. 7, 86-102, Nov. 2017.
doi:10.1109/MMM.2017.2740538

16., https://www.ansys.com/-/media/ansys/corporate/resourcelibrary/techbrief/ab-ansys-hfss-forantenna- simulation.pdf.

17. Laakso, I., S. Tanaka, S. Koyama, V. De Santis, and A. Hirata, "Inter-subject variability in electric fields of motor cortical tDCS," Brain Stimulation, Vol. 8, No. 5, 906-913, Elsevier, 2015.
doi:10.1016/j.brs.2015.05.002

18., http://niremf.ifac.cnr.it/tissprop/htmlclie/htmlclie.php.

19., https://transition.fcc.gov/bureaus/oet/info/documents/bulletins/oet65/oet65.pdf.