Vol. 79
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2018-10-23
Using Homogeneous Equivalent Parameters in Finite Element Models of Curved Metamaterial Structures
By
Progress In Electromagnetics Research Letters, Vol. 79, 103-108, 2018
Abstract
We report on the experimental verification of the employment of equivalent parameters in a 2D finite element model to describe absorptivity of curve-shaped, large-scale metamaterial structures. Equivalent homogeneous optical parameters were retrieved from experimental measurements of flat metamaterial sheets with square resonators of 8 and 9 mm and used in a 2D FE model to obtain the absorptivity of curved structures with similar metamaterial unit cells. The curved structures were experimentally characterized and showed good agreement with the model. The tremendous simplification made possible by simulating complex structures as homogeneous materials makes the method very attractive for designing large-scale electromagnetic shields and absorbers.
Citation
Richard Mattish, Fabio Alves, and Dragoslav Grbovic, "Using Homogeneous Equivalent Parameters in Finite Element Models of Curved Metamaterial Structures," Progress In Electromagnetics Research Letters, Vol. 79, 103-108, 2018.
doi:10.2528/PIERL18070302
References

1. Dean, P., A. Valavanis, J. Keeley, K. Bertling, Y. L. Lim, R. Alhathlool, A. D. Burnett, L. H. Li, S. P. Khanna, D. Indjin, T. Taimre, A. D. Rakic, E. H. Linfield, and A. G. Davies, "Terahertz imaging using quantum cascade lasers --- A review of systems and applications," J. Phys. D, Vol. 47, 374008, 2014.
doi:10.1088/0022-3727/47/37/374008

2. Qiao, S., Y. Zhang, S. Liang, L. Sun, H. Sun, G. Xu, Y. Zhao, and Z. Yang, "Multi-band terahertz active device with complementary metamaterial," J. Appl. Phys., Vol. 118, 123106, 2015.
doi:10.1063/1.4931583

3. Vendik, I. B. and O. G. Vendik, "Metamaterials and their applications in microwaves: A review," Tech. Phys., Vol. 58, 1-24, 2013.
doi:10.1134/S1063784213010234

4. Boggi, S., R. Alonso, and W. G. Fano, "Shielding effectiveness of a metamaterial measured at microwave range of frequency, known as wire screen metamaterial (WSM)," Progress In Electromagnetics Research M, Vol. 63, 33-46, 2018.
doi:10.2528/PIERM17090603

5. Tsutaoka, T., K. Hatakeyama, and T. Kasagi, "Possibilities for the EM absorber and shielding by use of metamaterials," 2009 International Symposium on Electromagnetic Compatibility, Kyoto, Japan, Jul. 20-24, 2009.

6. Solovey, A., "Theoretical limitations on shielding and reflective properties of microwave metamaterial absorbers," 2017 International workshop on Antenna Technology: Small Antennas, Innovative Structure, and Applications (iWat), 148-151, Athens, 2017.
doi:10.1109/IWAT.2017.7915343

7. Aydin, K., I. Bulu, K. Guven, M. Kafesaki, C. M. Soukoulis, and E. Ozbay, "Investigation of magnetic resonances for different split-ring resonator parameters and designs," New J. Phys., Vol. 7, 168-183, 2005.
doi:10.1088/1367-2630/7/1/168

8. Guo, H., N. Liu, L. Fu, T. P. Meyrath, T. Zentgraf, H. Schweizer, and H. Giessen, "Resonance hybridization in double split-ring resonator metamaterials," Optics Express, Vol. 15, 12095-12101, 2007.
doi:10.1364/OE.15.012095

9. Gwinner, M. C., E. Koroknay, L. Fu, P. Patoka, W. Kandulski, M. Giersig, and H. Giessen, "Periodic large-area metallic split-ring resonator metamaterial fabrication based on shadow nanosphere lithography," Small, Vol. 5, 400-406, 2009.
doi:10.1002/smll.200800923

10. Ozturk, Y. and A. E. Yilmaz, "Multiband and perfect absorber with circular fishnet metamaterial and its variations," ACES, Vol. 31, 1445-1451, 2016.

11. Shen, Y., Z. Pei, Y. Pang, J. Wang, A. Zhang, and S. Qu, "An extremely wideband and lightweight metamaterial absorber," J. Appl. Phys., Vol. 117, 224503, 2015.
doi:10.1063/1.4922421

12. Grbovic, D., F. Alves, B. Kearney, B. Waxer, R. Perez, and G. Omictin, "Metal-organic hybrid resonant terahertz absorbers with SU-8 photoresist dielectric layer," J. Micro/Nanolith. MEMS MOEMS, Vol. 12, No. 4, 041204, 2013.
doi:10.1117/1.JMM.12.4.041204

13. Alves, F., B. Kearney, D. Grbovic, N. V. Lavrik, and G. Karunasiri, "Strong terahertz absorption using SiO2/Al based metamaterial structures," Appl. Phys. Letters, Vol. 100, 111104, 2012.
doi:10.1063/1.3693407

14. Kearney, B., F. Alves, D. Grbovic, and G. Karunasiri, "Al/SiOx/Al single and multiband metamaterial absorbers for terahertz sensor applications," Opt. Engineering, Vol. 52, No. 1, 013801, 2013.
doi:10.1117/1.OE.52.1.013801

15. Tretyakov, S., Analytical Modeling in Applied Electromagnetics, Artech House, 2003.

16. Hewitt, C., F. Alves, J. Luscombe, and D. Grbovic, "Application of equivalent medium parameters in finite element models of microwave metamaterials," J. Appl. Phys., Vol. 123, 115101, 2018.
doi:10.1063/1.5008279

17. Liu, R., C. Ji, Z. Zhao, and T. Zhou, "Metamaterials: Reshape and rethink," Engineering, Vol. 1, 179-184, 2015.
doi:10.15302/J-ENG-2015036

18. Alves, F., B. Kearney, D. Grbovic, and G. Karunasiri, "Narrowband terahertz emitters using metamaterial films," Optics Express, Vol. 20, 171863, 2012.