Vol. 71
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2018-08-10
Broadband and Low-Profile Slot Antenna with AMC Surface for X/Ku Applications
By
Progress In Electromagnetics Research M, Vol. 71, 189-197, 2018
Abstract
A low-profile and broadband slot antenna with artificial magnetic conductor (AMC) surface is designed for X and Ku communications. Loaded with evolved C-shaped branches, the proposed coplanar waveguide (CPW)-fed slot antenna, which consists of two radiating slots, exhibits wide impedance frequency band performance. The presented AMC, the unit cell of which is made up of two central hexagonal circles with six rectangle branches, operates in a wide in-phase reflection frequency band ranging from 6.0 to 13.94 GHz (79.64%) at the reference plane 4 mm above the AMC surface. An AMC surface composed of 8×10 AMC unit cells is located under the slot antenna with a distance of approximately 0.107λ (λ denotes the free-space wavelength at 8.0 GHz), which improves the radiation and impedance match properties of the broadband slot antenna while maintaining low profile. A prototype of the proposed slot antenna with AMC surface is fabricated and measured. Measured results show that the composite antenna achieves a wide impedance bandwidth from 7.64 to 14.58 GHz (62.47%). The measured peak gain is up to 10.26 dBi, and the maximum cross-polarization level is -17.5 dB for both E and H planes. Good agreements between the measured and simulated results validate good performance of the presented slot antenna within the desired frequency band.
Citation
Xueyan Song, Tian-Ling Zhang, and Ze-Hong Yan, "Broadband and Low-Profile Slot Antenna with AMC Surface for X/Ku Applications," Progress In Electromagnetics Research M, Vol. 71, 189-197, 2018.
doi:10.2528/PIERM18061802
References

1. Malekpoor, H. and S. Jam, "Improved radiation performance of low profile printed slot antenna using wideband planar AMC surface," IEEE Trans. Antennas Propag., Vol. 64, No. 11, 4626-4638, 2016.
doi:10.1109/TAP.2016.2607761

2. Mohamed-Hicho, N. M., E. Antonino-Daviu, M. Cabedo-Fabres, J. P. Ciafardini, and M. Ferrando-Bataller, "On the interaction of characteristic modes in slot antennas etched on finite ground planes," 2016 European Conf. on Antennas Propag. (EuCAP), 1-5, 2016.

3. Ghaffarian, M. S., G. Moradi, and P. Mousavi, "Wide-band circularly polarized slot antenna by using novel feeding structure," 2017 European Conf. on Antennas Propag. (EuCAP), 2172-2175, 2017.
doi:10.23919/EuCAP.2017.7928629

4. Sievenpiper, D., L. Zhang, R. F. J. Broas, N. G. Alexopolous, and E. Yablonovitch, "High-impedance electromagnetic surfaces with a forbidden frequency band," IEEE Trans. Microw. Theory Tech., Vol. 47, No. 11, 2059-2074, 1999.
doi:10.1109/22.798001

5. Feresidis, A. P., G. Goussetis, S. Wang, and J. C. Vardaxoglou, "Artificial magnetic conductor surfaces and their application to low-profile high-gain planar antennas," IEEE Trans. Antennas Propag., Vol. 53, No. 1, 209-215, 2005.
doi:10.1109/TAP.2004.840528

6. Foroozesh, A. and L. Shafai, "Investigation into the application of artificial magnetic conductors to bandwidth broadening, gain enhancement and beam shaping of low profile and conventional monopole antennas," IEEE Trans. Antennas Propag., Vol. 59, 4-20, 2011.
doi:10.1109/TAP.2010.2090458

7. Vallecchi, A., J. R. Luis, F. Capolino, and F. D. Flaviis, "Low profile fully planar folded dipole antenna on a high impedance surface," IEEE Trans. Antennas Propag., Vol. 60, No. 1, 51-62, 2012.
doi:10.1109/TAP.2011.2167912

8. Song, X.-Y., C. Yang, T. Zhang, Z.-H. Yan, and R. Lian, "Broadband and gain enhanced bowtie antenna with AMC ground," Progress In Electromagnetics Research Letters, Vol. 61, 25-30, 2016.
doi:10.2528/PIERL16042606

9. Joubert, J., J. C. Vardaxoglou, W. G. Whittow, and J. W. Odendaal, "CPW-fed cavity-backed slot radiator loaded with an AMC reflector," IEEE Trans. Antennas Propag., Vol. 60, No. 2, 735-742, 2012.
doi:10.1109/TAP.2011.2173152

10. Hadarig, R. C., M. E. Cos Gomez, Y. Alvarez, and F. Las-Heras, "Novel bow-tie-AMC combination for 5.8-GHz RFID tags usable with metallic objects," IEEE Antennas Wireless Propag. Lett., Vol. 9, 1217-1220, 2010.
doi:10.1109/LAWP.2010.2100358

11. Saeed, S. M., C. A. Balanis, C. R. Birtcher, A. C. Durgun, and H. N. Shaman, "Wearable flexible reconfigurable antenna integrated with artificial magnetic conductor," IEEE Antennas Wireless Propag. Lett., Vol. 16, 2396-2399, 2017.
doi:10.1109/LAWP.2017.2720558

12. Yan, S., P. J. Soh, and G. A. E. Vandenbosch, "Low-profile dual-band textile antenna with artificial magnetic conductor plane," IEEE Trans. Antennas Propag., Vol. 62, No. 12, 6487-6490, 2014.
doi:10.1109/TAP.2014.2359194

13. Hadarig, R. C., M. E. Cos, and F. Las-Heras, "Novel miniaturized artificial magnetic conductor," IEEE Antennas Wireless Propag. Lett., Vol. 12, 174-177, 2013.
doi:10.1109/LAWP.2013.2245093

14. Yang, W. C., H. Wang, W. Q. Che, Y. Huang, and J. Wang, "High-gain and low-loss millimeter-wave LTCC antenna array using artificial magnetic conductor structure," IEEE Trans. Antennas Propag., Vol. 63, No. 1, 390-395, 2015.
doi:10.1109/TAP.2014.2364591

15. Munk, B. A., Frequency Selective Surfaces: Theory and Design, Wiley, New York, NY, USA, 2000.
doi:10.1002/0471723770

16. Cos, M. E, Y. Alvarez, and F. Las-Heras, "Novel broadband artificial magnetic conductor with hexagonal unit cell," IEEE Antennas Wireless Propag. Lett., Vol. 10, 615-618, 2011.
doi:10.1109/LAWP.2011.2159472