Vol. 79
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2018-09-27
Design of a Broadband Fixed IF Sub-Harmonic Mixer at Ka Band
By
Progress In Electromagnetics Research Letters, Vol. 79, 9-15, 2018
Abstract
This paper describes the design of a broadband, fixed-IF, high efficiency single subharmonic mixer at Ka-band. The co-simulation between HFSS and ADS is applied to the modeling of the mixer. In order to improve the accuracy of simulation, the diode model is divided into passive linear model and active nonlinear model. On this basis, a global accurate equivalent circuit model of mixer is proposed and verified by testing data. The circuit of the presented mixer printed on the substrate of Rogers RT/Duroid 3003 is mounted in a waveguide block. When the fifixed IF frequency is set at 1.5 GHz, measured results show that the conversion loss is less than 8 dB over the RF bandwidth from 25 GHz to 39 GHz with 12 dBm of local oscillator power. The minimum conversion loss of 6.2 dB is measured at 28 GHz. The measured isolation between LO and IF, LO and RF is over 23 dB. The measured isolation between IF and RF is over 20 dB. Good isolation is achieved.
Citation
Jianhong Hou, Heng Xie, Xing Li, Hongtao Zhang, Minghua Zhao, and Yong Fan, "Design of a Broadband Fixed IF Sub-Harmonic Mixer at Ka Band," Progress In Electromagnetics Research Letters, Vol. 79, 9-15, 2018.
doi:10.2528/PIERL18060802
References

1. Lin, S., L. D. Zhu, and Y. T. Guo, "Distribution characteristics and performance simulations of rain attenuation at Ka band for satellite communications," GSMM, 579-582, 2012.

2. Cheng, W., X. J. Deng, and M. Li, "110-170 GHz sub-harmonic mixer based on Schottky barrier diodes," ICMMT, Vol. 1, 1-4, 2012.

3. Chen, Z. H., J. P. Xu, and D. Z. Ding, "An accurate broadband equivalent circuit model of millimeter wave planar Schottky varistor diodes," ICMMT, Vol. 1, 1-4, 2012.

4. Li, K., M. H. Zhao, and Y. Fan, "A W band low-loss waveguide-to-microstrip probe transition for millimeter-wave applications," MMWCST, 1-3, 2012.

5. Liu, Z. and G. B. Xiao, "A new transition for SIW and microstrip line," APMC, 948-950, 2014.

6. Zhong, F. Q., B. Zhang, and Y. Fan, "A broadband W-band subharmonic mixers circuit based on planar Schottky diodes," 2012 International Conference on Industrial Control and Electronics Engineering (ICICEE), 792-794, October 04, 2012.

7. Liu, Y., M. Zhao, Z. He, and Z. Zhu, "A high efficiency balanced frequency tripler incorporating compensation structure for millimeter-wave application," Progress In Electromagnetics Research C, Vol. 59, 79-88, 2015.
doi:10.2528/PIERC15072103

8. Li, K., M. Zhao, Y. Fan, Z. B. Zhu, and W.-Z. Cui, "Compact lowpass filter with wide stopband using novel double-folded scmrc structure with parallel open-ended stub," Progress In Electromagnetics Research Letters, Vol. 36, 77-86, 2013.
doi:10.2528/PIERL12100910

9. Yum, T. Y., Q. Xue, and C. H. Chan, "Novel subharmonically pumped mixer incorporating dual-band stub and in-line SCMRC," IEEE Transactions on Microwave Theory and Techniques, Vol. 51, 2538-2547, 2003.
doi:10.1109/TMTT.2003.820152

10. Kumar, G. A. and A. Kumar, "Low conversion loss Ka-band suspended stripline mixer with low LO power," IEEE Applied Electromagnetics Conference (AEMC), 1-2, 2013.

11. Kawakami, K., M. Shimozawa, and H. Ikematsu, "A millimeter-wavebroadband monolithic even harmonic image rejection mixer," IEEE MTT-S International Microwave Symposium Digest, Vol. 3, 1443-1446, 1998.

12. Bhavsar, M. L., R. Sharma, and A. Bhattacharya, "Monolithic Ka to Ku-band all balanced sub-harmonic resistive PHEMT mixer for satellite transponder," IEEE Microwave and Wireless Components Letters, Vol. 25, 316-318, 2015.
doi:10.1109/LMWC.2015.2409799

13. Wen, W. J., M. Gao, B. Song, and J. Xun, "Design of a Ka-band GaAs MMIC broadband single-balanced mixer," Semiconductor Technology, Vol. 25, 661-665, 2013.

14. Li, K., "Development of a millimeter wave ultra-wideband subharmonically pumped mixer," Telecommunication Engineering, Vol. 54, 338-342, 2014.