Vol. 78
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2018-08-23
Wideband Direction of Arrival Estimation Based on the Principal Angle Between Subspaces
By
Progress In Electromagnetics Research Letters, Vol. 78, 23-29, 2018
Abstract
In this paper, we propose a novel method for wideband direction of arrival (DOA) estimation. By calculating the largest principal angle between the signal subspace and the subspace spanned by the augmented array manifold, the proposed method can estimate direction of arrival of wideband signals. Unlike conventional wideband methods, it adopts a new augmented array manifold and constructs the augmented matrix entirely by processing the received signals in frequency domain. It does not require any preliminary DOA estimates or focusing matrices. Simulation results show that the proposed method exhibits satisfactory performance at medium and high signal-to-noise ratio (SNR) conditions in comparison to the existing wideband DOA estimation methods.
Citation
Zhiyu Feng, Hongshu Liao, Lu Gan, Dong Yang, and Rong Hu, "Wideband Direction of Arrival Estimation Based on the Principal Angle Between Subspaces," Progress In Electromagnetics Research Letters, Vol. 78, 23-29, 2018.
doi:10.2528/PIERL18060407
References

1. Van Trees, H. L., Optimum Array Processing: Part IV of Detection, Estimation and Modulation Theory, Vol. 1, Wiley Online Library, 2002.

2. Doron, M. A., A. J. Weiss, and H. Messer, "Maximum-likelihood direction finding of wide-band sources," IEEE Transactions on Signal Processing, Vol. 41, No. 1, 411, 1993.
doi:10.1109/TSP.1993.193166

3. Wax, M., T.-J. Shan, and T. Kailath, "Spatio-temporal spectral analysis by eigenstructure methods," IEEE Transactions on Acoustics, Speech, and Signal Processing, Vol. 32, No. 4, 817-827, 1984.
doi:10.1109/TASSP.1984.1164400

4. Wang, H. and M. Kaveh, "Coherent signal-subspace processing for the detection and estimation of angles of arrival of multiple wide-band sources," IEEE Transactions on Acoustics, Speech, and Signal Processing, Vol. 33, No. 4, 823-831, 1985.
doi:10.1109/TASSP.1985.1164667

5. Valaee, S. and P. Kabal, "Wideband array processing using a two-sided correlation transformation," IEEE Transactions on Signal Processing, Vol. 43, No. 1, 160-172, 1995.
doi:10.1109/78.365295

6. Swingler, D. N. and J. Krolik, "Source location bias in the coherently focused high-resolution broad-band beamformer," IEEE Transactions on Acoustics, Speech, and Signal Processing, Vol. 37, No. 1, 143-145, 1989.
doi:10.1109/29.17516

7. Di Claudio, E. D. and R. Parisi, "Waves: Weighted average of signal subspaces for robust wideband direction finding," IEEE Transactions on Signal Processing, Vol. 49, No. 10, 2179-2191, 2001.
doi:10.1109/78.950774

8. Pal, P. and P. Vaidyanathan, "A novel autofocusing approach for estimating directions-of-arrival of wideband signals," 2009 Conference Record of the Forty-Third Asilomar Conference on IEEE Signals, Systems and Computers, 1663-1667, 2009.
doi:10.1109/ACSSC.2009.5469796

9. Yoon, Y.-S., L. M. Kaplan, and J. H. McClellan, "Tops: New DOA estimator for wideband signals," IEEE Transactions on Signal Processing, Vol. 54, No. 6, 1977-1989, 2006.
doi:10.1109/TSP.2006.872581

10. Mahata, K., "A subspace algorithm for wideband source localization without narrowband filtering," IEEE Transactions on Signal Processing, Vol. 59, No. 7, 3470-3475, 2011.
doi:10.1109/TSP.2011.2135856

11. Yan, F.-G., M. Jin, S. Liu, and X.-L. Qiao, "Real-valued music for efficient direction estimation with arbitrary array geometries," IEEE Transactions on Signal Processing, Vol. 62, 1548-1560, 2014.
doi:10.1109/TSP.2014.2298384

12. Yan, F.-G., Y. Shen, and M. Jin, "Fast doa estimation based on a split subspace decomposition on the array covariance matrix," Signal Processing, Vol. 115, 1-8, 2015.
doi:10.1016/j.sigpro.2015.03.008

13. Huang, J., Q. Huang, L. Zhang, and Y. Fang, "A real-valued approach for wideband DOA estimation using spherical arrays," Signal Processing, Vol. 125, No. C, 79-86, 2016.
doi:10.1016/j.sigpro.2016.01.009

14. Shi, J., Q. F. Zhang, and Y. Wang, "Wideband DOA estimation based on A-shaped array," IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC), 1-5, 2017.

15. Hu, N., B. Sun, J. J. Wang, and J. F. Yang, "Covariance-based DOA estimation for wideband signals using joint sparse Bayesian learning," IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC), 1-5, 2017.

16. Golub, G. H. and C. F. van Loan, Matrix Computations, 374-426, Johns Hopkins University Press, 1996.

17. Wax, M. and T. Kailath, "Detection of signals by information theoretic criteria," IEEE Transactions on Acoustics, Speech, and Signal Processing, Vol. 33, No. 2, 387-392, 1985.
doi:10.1109/TASSP.1985.1164557