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Abstract—In this paper, we propose a novel method for wideband direction of arrival (DOA)
estimation. By calculating the largest principal angle between the signal subspace and the subspace
spanned by the augmented array manifold, the proposed method can estimate direction of arrival of
wideband signals. Unlike conventional wideband methods, it adopts a new augmented array manifold
and constructs the augmented matrix entirely by processing the received signals in frequency domain.
It does not require any preliminary DOA estimates or focusing matrices. Simulation results show that
the proposed method exhibits satisfactory performance at medium and high signal-to-noise ratio (SNR)
conditions in comparison to the existing wideband DOA estimation methods.

1. INTRODUCTION

Due to the increased use of wideband signals in the fields of wireless communication system and radar,
the problem of direction of arrival (DOA) estimation of wideband signals has been of considerable
interest to the array signal processing in recent years [1].

Quite a lot of algorithms have been proposed to estimate the DOAs of wideband signals, among
which maximum-likelihood (ML) methods and subspace methods are the most well studied. The ML
estimators show excellent performance, but multidimensional non-linear global search is needed [2].
The subspace methods, although not optimal, are more computationally attractive than ML methods.
Subspace methods can be divided into two classes: incoherent signal subspace method (ISSM) and
coherent signal subspace method (CSSM). Generally, ISSM [3] decomposes the array output into several
narrow frequency portions and an individual processing is performed to estimate the DOAs of the signals
at each frequency bin. Then a result is constructed by taking an average of DOAs at different frequency
bins. While ISSM works well at high SNR, the performance degrades greatly when the SNR is low or
varies at different frequency bins since even a single outlier from one frequency bin can potentially lead
to inaccurate estimates through the averaging processing. ISSM can not handle coherent sources as
well. To overcome these problems, several CSSM methods have been proposed [4–6]. These methods
transform the correlation matrices at each frequency bin into one general correlation matrix at the
focusing frequency by applying the focusing matrices. However, CSSM is sensitive to the focusing
angles which are the initial estimates of the true DOAs [6]. In order to eliminate the preliminary DOA
estimates’ influence, several improved methods were proposed such as the weighted average of signal
subspaces (WAVES) [7] and the autofocusing CSSM [8]. Although WAVES and autofocusing CSSM
methods can avoid initial estimates, their estimation performance could either not be held at high SNR
or be likely to depend on the choice of the focusing frequency. A novel wideband DOA algorithm called
test of orthogonality of projected subspaces (TOPS) [9] has been proposed. It is in between the coherent
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and incoherent processing and does not require initial estimates. However, the spatial spectrum of TOPS
always shows spurious peaks which can potentially lead to false DOA especially when the number of
the sources increases. A low rank signal model method was then proposed which can avoid preliminary
DOA estimates and frequency domain processes, but it requires that the wideband signals should be n
times differentiable, oversampled considerably for B-spline function approximation [10]. Yan presented
a real-valued root MUSIC algorithm which exploits a subspace decomposition on the real-part of array
covariance matrix [11, 12]. It can reduce the computational cost through sacrificing the sum number
of estimating signal. Huang proposed a real-valued approach for wideband DOA estimation [13]. This
method could enhance the resolution of angles while maintain a low calculation complexity. However,
it only works well for spherical arrays. A wideband DOA estimation technique based on the A-shaped
array for underwater passive target was presented [14]. The joint use of Bayesian learning model and
expectation-maximization (EM) method in frequency domain was proposed to solve wideband DOA
estimation, but it may increase the amount of computational complexity [15].

In this paper, we propose a new method of incoherent wideband DOA estimation based on the
largest principal angle (LPA) [16] between two subspaces. Unlike the coherent methods which must
align the signal and noise subspaces to form a general covariance matrix, this method only uses the
LPA between the signal subspace and the subspace spanned by the augmented array manifold which
contains all frequency bins for estimating the DOAs of the wideband sources. Simulation results indicate
that the proposed method performs well at medium and high SNR conditions.

2. PROPOSED METHOD

Consider an M element linear array with unambiguous array manifold, and there are K(≤ M) wideband
incoherent sources s1(t), s2(t), . . . , sK(t) impinging on the array from different directions of arrival
θ1, θ2, . . . , θK respectively. The signal received at the m-th sensor is given by

ym(t) =
K∑

k=1

sk(t − τm(θk)) + wm(t), m = 0, . . . ,M − 1, (1)

where τm(θk) is the propagation delay associated with the k-th source at the m-th sensor, and wm(t)
is the additive noise at the m-th sensor. We sample the incoming signal at the frequency fs and the
entire samples are then partitioned into segments with P = ΔTfs samples each. Then a P -point DFT
is applied to the P samples in each segment. The DFT coefficients from the M sensors can be written
as

Y(fi) = Aθ(fi)S(fi) + W(fi), i = 0, 1, . . . , P − 1, (2)

where Y(fi) = [Y1(fi)Y2(fi) . . . YM (fi)]T is an M × 1 vector with Ym(fi) being the DFT coefficient
of samples of xm(t) at frequency fi with fi = i

P fs. Aθ(fi) = [aθ1(fi) aθ2(fi) . . . aθK
(fi)] is an

M × K matrix with aθk
(fi) = [e−j2πfiτ1(θk) e−j2πfiτ2(θk) . . . e−j2πfiτM (θk)]T being the steering vector

of the array at frequency fi for the k-th source, and W(fi) = [W1(fi)W2(fi) . . . WM (fi)]T and
S(fi) = [S1(fi) S2(fi) . . . SK(fi)]T are two vectors with Wm(fi) and Sk(fi) being the DFT coefficients at
frequency fi of the samples of wm(t) and sk(t), respectively. The operator (•)T denotes the transpose.
We assume that ΔT is long enough compared to the correlation time of the signals and the noise.
Therefore, the DFT coefficients can be regarded as uncorrelated.

Suppose that there are L segments with P samples of each. We calculate the DFT coefficients of
each segment, pick out N frequency bins which vary from f1 to fN , and then stack the DFT coefficients
of the same segment in sequence to form a column vector. We arrange the L stacked column vectors in
sequence to form an MN × L augmented data matrix Y in frequency domain. Then it can be expressed
by

AθS + W = Y (3)

S =

⎡
⎢⎢⎢⎣

S1(f1) S2(f1) · · · SL(f1)
S1(f2) S2(f2) · · · SL(f2)

...
...

. . .
...

S1(fN ) S2(fN ) · · · SL(fN )

⎤
⎥⎥⎥⎦
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W =

⎡
⎢⎢⎢⎣

W1(f1) W2(f1) · · · WL(f1)
W1(f2) W2(f2) · · · WL(f2)

...
...

. . .
...

W1(fN ) W2(fN ) · · · WL(fN )

⎤
⎥⎥⎥⎦

Y =

⎡
⎢⎢⎢⎣

Y1(f1) Y2(f1) · · · YL(f1)
Y1(f2) Y2(f2) · · · YL(f2)

...
...

. . .
...

Y1(fN ) Y2(fN ) · · · YL(fN )

⎤
⎥⎥⎥⎦

where Sl(fi) = [Sl
1(fi) Sl

2(fi) . . . Sl
K(fi)]T represents the DFT coefficients of the l-th segment of

the wideband sources at frequency fi. Similarly, Wl(fi) = [Wl
1(fi)Wl

2(fi) . . . Wl
M (fi)]T represents

the DFT coefficients of the l-th segment of the additive noise at frequency fi, and Yl(fi) =
[Yl

1(fi)Yl
2(fi) . . . Yl

M (fi)]T are the DFT coefficients of the l-th segment of the receive signals at
frequency fi. The matrix Aθ = blkdiag{Aθ(f1), Aθ(f2), . . . , Aθ(fN )} is an MN ×NK block diagonal
matrix, where the symbol blkdiag{Aθ(f1), Aθ(f2), . . . , Aθ(fN )} represents a block diagonal matrix with
diagonal elements Aθ(f1), Aθ(f2), . . . , Aθ(fN ). The following equations will be held on the assumption
that the additive white noise on each sensor is both spatially and temporally uncorrelated.{

E{wm(t)wm(t + τ)} = 0, τ �= 0
E{wp(t)wq(t)} = 0, p �= q

(4)

Therefore, the sequence obtained from the DFT of the additive white noise remains white both in the
frequency and space domain.

It is noted that the matrix Aθ is full rank with rank(Aθ) = NK. Since the columns of Aθ are
independent, the finite-dimensional subspace spanned by the columns of Aθ is equivalent to the range
of Aθ. It can be expressed as

R(Aθ) =
N⊕

j=1
span

{
Ãθ(fj)

}
, (5)

where R(Aθ) denotes the range subspace of matrix Aθ. The operator ‘⊕’ denotes the direct-sum
operator between subspaces. Ãθ(fj) is defined as following

Ãθ(fj) =

⎡
⎣ 0M(j−1)×K

Aθ(fj)
0M(N−j)×K

⎤
⎦ j = 1, 2, . . . , N. (6)

From Eq. (3), the economy SVD of a noise-corrupted Y can be expressed as following

Y = ÛΣ̂V̂H , (7)

where Û is an MN × MN unitary matrix composed of left singular vectors {ui, i = 1, 2, . . . ,MN},
and V̂ is an MN × L unitary matrix composed of right singular vectors {vi, i = 1, 2, . . . ,MN},
Σ̂ = Diag(σ1, σ2, . . . , σMN ) (σ1 ≥ σ2 · · · ≥ σMN ) is a diagonal matrix with real positive diagonal entries
called singular values of the matrix Y and the operator (•)H denotes conjugated transpose. Then, Y
can be expressed as

Y = σ1u1vH
1 + σ2u2vH

2 + · · · + σNKuNKvH
NK + σNK+1uNK+1vH

NK+1 + · · · + σMNuMNvH
MN . (8)

We can divide the singular values of the matrix Y into two parts. One contains the σ1, · · · , σNK ,
which represents the signals plus noise, the other contains the σNK+1, · · · , σMN which only represents
noise. In practical application, we can determine the dimension of the signal subspace is NK via AIC
or MDL [17] methods.

Then we have

Y = [Û1 Û2]
[

Σ1 0
0 Σ2

]
V̂H , (9)
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where Û1 is an MN ×NK unitary matrix composed by left singular vectors associated with NK bigger
singular values, and Û2 is an MN × (MN −NK) unitary matrix composed by the rest of left singular
values. Then the subspace Û1 is the estimated signal subspace.

Considering that the number of sources is less than the number of sensor, then Û1 has more rows
than columns. And

span(Û1) =
N⊕

j=1
span

{
Ãθ(fj)

}
, (10)

then we rearrange the columns Aθ according to the directions of the sources. It can be expressed as

Aθ =
[

Ab
θ1

Ab
θ2

· · · Ab
θK

]
MNK , (11)

where Ab
θk

= blkdiag{aθk
(f1)aθk

(f2) · · · aθk
(fN )}MN×N and MNK is a NK×NK permutation matrix.

Clearly, the augmented array manifold satisfies

span{Ab
θk
} ⊂ N⊕

j=1
span{Ãθ(fj)} = span(Û1) k = 1, 2, . . . ,K. (12)

Now for any θ, we can calculate the LPA which measures the “distance” between two subspaces
which are the true signal subspace (given by the span of the columns of the augmented array manifold
Ab

θ) and the estimated signal subspace obtained through SVD of augmented data matrix Y.
The LPA between two matrices can be computed through

LPA(U1,U2) = cos−1
(
σmin

(
orth(U1)

H · orth(U2)
H

))
(13)

where orth(Ui)H , i = 1, 2, is an orthonormal basis for the linear vector space spanned by the columns
of Ui, and σmin(Z) denotes the smallest singular value of the matrix Z. The LPA is usually given in
degrees.

Particularly, LPA(Ab
θ, Û1) = 0 will hold when span{Aθ} ⊂ span(Û1). It means that LPA(Ab

θ, Û1)
will be 0 on the assumption that the scanning direction θ equals to one of the DOAs, otherwise,
LPA(Ab

θ, Û1) will be bigger than 0. Therefore we can find the source locations {θk}K
k=1 by finding the

minimum of angular spectrum.
The following steps summarize this proposed method of DOA estimation of wideband sources.

1) Compute the temporal DFT of the L data segments of received signal.
2) Arrange augmented data matrix Y according to Eq. (3).

3) Compute the economy SVD of Y and estimate the signal subspace Û1.

4) Calculate LPA between the signal subspace Û1 and the subspace spanned by the augmented array
manifold Ab

θ at different scanning direction.
5) Estimate the DOAs by finding the K minimum principal angles.

Remark : It is noted that the focusing process is avoidable because the augmented array manifold Ab
θ

contains all the frequency bins. The proposed method is similar to spectral MUSIC which is applicable
to any array configuration [1, P. 1158]. Similarly, any arbitrary array geometry has its own augmented
array manifold which is needed to calculate the LPA respectively.

3. SIMULATION AND ANALYSIS

We compare the performance of the proposed algorithm with those of the most widely used methods
such as ML [2], ISSM [3], RSS [4], autofocusing CSSM [8] and TOPS [9]. Suppose that there are 3
wideband (i.e., K = 3) incoherent sources impinging on a 8 element uniform linear array (ULA) from
10◦, 20◦ and 30◦. The sources cover the frequency band between 0.6π and π in the digital frequency
domain. The sensor spacing is chosen to be λ0/2 where λ0 is the wavelength corresponding to the
central frequency of the signal.
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The samples of impinging signal are divided into L = 100 segments of P = 256 samples each. In
each segment the 256 samples are converted to frequency domain by a 256-point DFT, which are then
processed using six different algorithms: a) the proposed method. b) ISSM method. c) CSSM using
RSS focusing matrices with initial DOA estimates [8◦, 18◦, 32◦]. d) Autofocuing CSSM method. e)
The TOPS algorithm. f) the maximum-likelihood method. All The focusing matrices are constructed
following [4] and the focusing frequency is chosen to be the lowest frequency of the band. It is to
be noted that only ten frequency bins (i.e., N = 10) are used in the proposed method and all the
conventional methods. 500 independent Monte Carlo trials have been carried out for each simulation.

Simulation test 1: performances of the six algorithms are compared for the source at 20◦ in terms
of their root-mean-squared error (RMSE) in Fig. 1(a) (here, we suppose that there is only one signal
impinging on the array from 20◦ and the initial DOA are [18◦] for the RSS algorithm). As expected,
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Figure 1. (a) Comparison of RMSE of the different wideband DOA estimation algorithms v/s SNR
for single source at 20◦. (b) Comparison of LPA-spectrums of the proposed algorithm under different
SNR.
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Figure 2. DOA estimation results with 4 wideband sources. (a) Pseudo-spectrums of TOPS. (b)
LPA-spectrums of the proposed method.
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the ML method performs best among the six methods. The performance of the proposed method is less
than the ML’s and TOPS’. The RSS suffers even at high SNR due to the poor initial DOAs (in fact,
the initial DOA in our experiment is less than 2◦), the ISSM and autofocusing method perform worse
than the proposed method when SNR is larger than 2.5 dB.

Simulation test 2: suppose that there are 3 wideband signals impinging on the ULA, and the
simulation condition is the same as the Simulation test 1. The comparison of LPA-spectrums of the
proposed method under different SNRs is shown in Fig. 1(b). It is clear that with the increase of SNR,
the LPA-spectrum peaks show better sharpness, and there are almost no false peaks when SNR is larger
than 0 dB.

Simulation test 3: suppose that another signal is impinging at 40◦ besides the 3 wideband signals
as shown in simulation test 2. Figs. 2(a), (b) show the pseudo-spectrums of the TOPS and the LPA-
spectrums of the proposed method for 5 trials when SNR = 15 dB and snapshots = 100, respectively.
It is shown that the pseudo-spectrums of the TOPS have spurious peaks but it would not occur in
LPA-spectrums of the proposed method. With the increase of the number of sources, the spurious
peaks will suffer more in TOPS method.

4. CONCLUSIONS

In this paper, we have proposed a new wideband DOA estimation algorithm based on the largest
principal angle between subspaces. The proposed method adopts a new array manifold containing all
the frequency without focusing process and is applicable to any array geometry. It provides a solution to
avoiding the requirement of initial DOA estimates, while exhibiting the desirable performances better
than the coherent methods. It can overcome the drawbacks of the TOPS method without spurious
peaks. Simulation results show that it exhibits a satisfactory performance at medium and high SNR.
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