Vol. 77
Latest Volume
All Volumes
2018-07-29
High-Order FDTD with Exponential Time Differencing Algorithm for Modeling Wave Propagation in Debye Dispersive Materials
By
Progress In Electromagnetics Research Letters, Vol. 77, 103-107, 2018
Abstract
A high-order (HO) finite-difference time-domain (FDTD) method with exponential time differencing (ETD) algorithm is proposed to model electromagnetic wave propagation in Debye dispersive material in this paper. The proposed method introduces an auxiliary difference equation (ADE) technique which establishes the relationship between the electric displacement vector and electric field intensity with a differential equation in Debye dispersive media. The ETD algorithm is applied to the displacement vector and auxiliary difference variable in time domain, and the fourth-order central-difference discretization is used in space domain. One example with plane wave propagation in a Debye dispersive media is calculated. Compared with the conventional ETD-FDTD method, the results from our proposed method show its accuracy and efficiency for Debye dispersive media simulation.
Citation
Wei-Jun Chen, and Jun Tang, "High-Order FDTD with Exponential Time Differencing Algorithm for Modeling Wave Propagation in Debye Dispersive Materials," Progress In Electromagnetics Research Letters, Vol. 77, 103-107, 2018.
doi:10.2528/PIERL18060404
References

1. Kelley, D. F. and R. J. Luebbers, "Piecewise linear recursive convolution for dispersive media using FDTD," IEEE Trans. Antennas Propag., Vol. 44, No. 6, 792-797, Jun. 1996.
doi:10.1109/8.509882

2. Sullivan, D. M., "Frequency dependent FDTD methods using Z transform," IEEE Trans. Antennas Propag., Vol. 40, No. 10, 1223-1230, Oct. 1992.
doi:10.1109/8.182455

3. Alsunaidi, M. A. and A. A. Al-Jabr, "A general ADE-FDTD algorithm for the simulation of dispersive structures," IEEE Photon. Technol. Lett., Vol. 21, No. 12, 817-819, Jun. 2009.
doi:10.1109/LPT.2009.2018638

4. Prokopidis, K. P., E. P. Kosmidou, and T. D. Tsiboukis, "An FDTD algorithm for wave propagation in dispersive media using higher-order schemes," J. Electromagnet. Wave, Vol. 18, No. 9, 1171-1194, 2004.
doi:10.1163/1569393042955306

5. Bokil, V. A. and N. Gibson, "Analysis of spatial high-order finite difference methods for Maxwell’s equations in dispersive media," IMAJ. Numer. Anal., Vol. 32, No. 3, 926-956, 2012.
doi:10.1093/imanum/drr001

6. Petropoulos, P. G., "Analysis of exponential time-differencing for FDTD in lossy dielectrics," IEEE Trans. Antennas Propag., Vol. 45, No. 6, 1054-1057, Jun. 1997.
doi:10.1109/8.585755

7. Huang, S. J. and F. Li, "FDTD implementation for magnetoplasma medium using exponential time differencing," IEEE Microwave and Wireless Components Letters, Vol. 15, No. 3, Mar. 2005.
doi:10.1109/LMWC.2005.844219

8. Kusaf, M., A. Y. Oztoprak, and D. S. Daoud, "Optimized exponential operator coefficients for symplectic FDTD method," IEEE Microwave and Wireless Components Letters, Vol. 15, No. 2, Feb. 2005.
doi:10.1109/LMWC.2004.842827

9. Xu, Z. and X. Ma, "Integral-based exponential time differencing algorithms for general dispersive media and the CFS-PML," IEEE Trans. Antennas Propag., Vol. 60, No. 7, 3257-3264, Jul. 2012.

10. Xu, Z., X. Ma, and Z. Kang, "Efficient FDTD-PML simulation of gain medium based on exponential time differencing algorithm," IEEE Trans. Antennas Propag., Vol. 61, No. 4, 2123-2129, Apr. 2013.
doi:10.1109/TAP.2012.2233858

11. Gibbins, D. R., C. J. Railton, I. J. Craddock, and T. N. T. Henriksson, "A numerical study of debye and conductive dispersion in high dielectric materials using a general ADE-FDTD algorithm," IEEE Trans. Antennas Propag., Vol. 64, No. 6, 2401-2409, Apr. 2016.
doi:10.1109/TAP.2016.2550056