Vol. 77
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2018-07-29
High-Order FDTD with Exponential Time Differencing Algorithm for Modeling Wave Propagation in Debye Dispersive Materials
By
Progress In Electromagnetics Research Letters, Vol. 77, 103-107, 2018
Abstract
A high-order (HO) finite-difference time-domain (FDTD) method with exponential time differencing (ETD) algorithm is proposed to model electromagnetic wave propagation in Debye dispersive material in this paper. The proposed method introduces an auxiliary difference equation (ADE) technique which establishes the relationship between the electric displacement vector and electric field intensity with a differential equation in Debye dispersive media. The ETD algorithm is applied to the displacement vector and auxiliary difference variable in time domain, and the fourth-order central-difference discretization is used in space domain. One example with plane wave propagation in a Debye dispersive media is calculated. Compared with the conventional ETD-FDTD method, the results from our proposed method show its accuracy and efficiency for Debye dispersive media simulation.
Citation
Wei-Jun Chen, and Jun Tang, "High-Order FDTD with Exponential Time Differencing Algorithm for Modeling Wave Propagation in Debye Dispersive Materials," Progress In Electromagnetics Research Letters, Vol. 77, 103-107, 2018.
doi:10.2528/PIERL18060404
References

1. Kelley, D. F. and R. J. Luebbers, "Piecewise linear recursive convolution for dispersive media using FDTD," IEEE Trans. Antennas Propag., Vol. 44, No. 6, 792-797, Jun. 1996.
doi:10.1109/8.509882

2. Sullivan, D. M., "Frequency dependent FDTD methods using Z transform," IEEE Trans. Antennas Propag., Vol. 40, No. 10, 1223-1230, Oct. 1992.
doi:10.1109/8.182455

3. Alsunaidi, M. A. and A. A. Al-Jabr, "A general ADE-FDTD algorithm for the simulation of dispersive structures," IEEE Photon. Technol. Lett., Vol. 21, No. 12, 817-819, Jun. 2009.
doi:10.1109/LPT.2009.2018638

4. Prokopidis, K. P., E. P. Kosmidou, and T. D. Tsiboukis, "An FDTD algorithm for wave propagation in dispersive media using higher-order schemes," J. Electromagnet. Wave, Vol. 18, No. 9, 1171-1194, 2004.
doi:10.1163/1569393042955306

5. Bokil, V. A. and N. Gibson, "Analysis of spatial high-order finite difference methods for Maxwell’s equations in dispersive media," IMAJ. Numer. Anal., Vol. 32, No. 3, 926-956, 2012.
doi:10.1093/imanum/drr001

6. Petropoulos, P. G., "Analysis of exponential time-differencing for FDTD in lossy dielectrics," IEEE Trans. Antennas Propag., Vol. 45, No. 6, 1054-1057, Jun. 1997.
doi:10.1109/8.585755

7. Huang, S. J. and F. Li, "FDTD implementation for magnetoplasma medium using exponential time differencing," IEEE Microwave and Wireless Components Letters, Vol. 15, No. 3, Mar. 2005.
doi:10.1109/LMWC.2005.844219

8. Kusaf, M., A. Y. Oztoprak, and D. S. Daoud, "Optimized exponential operator coefficients for symplectic FDTD method," IEEE Microwave and Wireless Components Letters, Vol. 15, No. 2, Feb. 2005.
doi:10.1109/LMWC.2004.842827

9. Xu, Z. and X. Ma, "Integral-based exponential time differencing algorithms for general dispersive media and the CFS-PML," IEEE Trans. Antennas Propag., Vol. 60, No. 7, 3257-3264, Jul. 2012.

10. Xu, Z., X. Ma, and Z. Kang, "Efficient FDTD-PML simulation of gain medium based on exponential time differencing algorithm," IEEE Trans. Antennas Propag., Vol. 61, No. 4, 2123-2129, Apr. 2013.
doi:10.1109/TAP.2012.2233858

11. Gibbins, D. R., C. J. Railton, I. J. Craddock, and T. N. T. Henriksson, "A numerical study of debye and conductive dispersion in high dielectric materials using a general ADE-FDTD algorithm," IEEE Trans. Antennas Propag., Vol. 64, No. 6, 2401-2409, Apr. 2016.
doi:10.1109/TAP.2016.2550056