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High-Order FDTD with Exponential Time Differencing Algorithm
for Modeling Wave Propagation in Debye Dispersive Materials

Wei-Jun Chen1, * and Jun Tang2

Abstract—A high-order (HO) finite-difference time-domain (FDTD) method with exponential time
differencing (ETD) algorithm is proposed to model electromagnetic wave propagation in Debye
dispersive material in this paper. The proposed method introduces an auxiliary difference equation
(ADE) technique which establishes the relationship between the electric displacement vector and electric
field intensity with a differential equation in Debye dispersive media. The ETD algorithm is applied to
the displacement vector and auxiliary difference variable in time domain, and the fourth-order central-
difference discretization is used in space domain. One example with plane wave propagation in a Debye
dispersive media is calculated. Compared with the conventional ETD-FDTD method, the results from
our proposed method show its accuracy and efficiency for Debye dispersive media simulation.

1. INTRODUCTION

Over the past decade, many FDTD algorithms for dispersive media have been proposed, such as the
recursive convolution method [1], Z transform method [2], and auxiliary differential equation method [3].
However, when modeling high loss and/or large dielectric constants these methods become unstable.
To improve the stability and calculation accuracy for high dielectric dispersive media, the high-order
finite difference scheme in space domain and exponential time differencing algorithm in time domain
have been used to model electromagnetic wave propagation [4–11]. In [4], a fourth-order accurate in
space and second-order accurate in time FDTD scheme are presented to modeling wave propagation in
lossy dispersive media. In [5], the stability property and numerical dispersion relation for high-order
FDTD scheme with a Debye or Lorentz model are analyzed. In [4] and [5], the high-order scheme
is used in space, and numerical dissipation is strongly dependent on the temporal resolution. In [6],
the ETD scheme for FDTD is proposed to model electromagnetic wave propagation in an isotropic
homogeneous lossy dielectric with electric and magnetic conductivities σ and σ∗, respectively. In [7],
the electromagnetic propagation in dispersive magnetoplasma medium is modeled using the FDTD
method based on the ETD. In [9] and [10], an efficient ETD algorithm for general dispersive media
in FDTD is introduced. However, these methods use ETD scheme only to electric field intensity or
auxiliary variable. To improve the stability and computational accuracy, both the displacement vector
and auxiliary difference variable apply ETD algorithm to model Debye and conductive dispersion in
high dielectric material in [11].

To develop ETD methods further, in this paper a more accurate ETD-FDTD method with fourth-
order central difference in space domain is proposed to model wave propagation in Debye dispersive
media. The proposed method introduces an auxiliary difference equation (ADE) technique which
establishes the relationship between the electric displacement vector and electric field intensity with
a differential equation in high dielectric dispersive media. The ETD algorithm is applied to the
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displacement vector and auxiliary difference variable in time domain, and the fourth-order central-
difference discretization is used in space domain. One example with plane wave propagation in Debye
dispersive media is calculated. Compared with the conventional ETD-FDTD method, the results from
our proposed method show its accuracy and efficiency for Debye dispersive media simulation.

2. MATHEMATICAL FORMULATION

With lossy and dispersive media, the Maxwell’s equations can be written as

∂D(r, t)
∂t

= ∇× H(r, t) − σE(r, t) − J(r, t) (1)

∂H(r, t)
∂t

= − 1
μ0

∇× E(r, t) (2)

where σ is the electrical conductivity of material, and J is the electric current density. The electric
displacement vector D is related to the electric field intensity E though the relative dielectric constant
of the local tissue by

D(r, ω) = ε0εr(r, ω)E(r, ω) (3)

where ε0 is the electric permittivity of free space. The relative dielectric constant εr of the Debye
material in the frequency domain can be written as

εr(ω) = ε∞ +
εs − ε∞
1 + jωτ

(4)

where εs and ε∞ are the static permittivity and infinite dielectric constant; ω represents the angular
frequency; τ is the relaxation time. Substituting Eq. (4) into Eq. (3) and introducing an auxiliary
difference variable S, we get

E(r, ω) =
D(r, ω) − S(r, ω)

ε0ε∞
(5)

S(r, ω) = ε0
εs − ε∞
1 + jωτ

E(r, ω) (6)

With the transition relationship from frequency domain to time domain (jω → ∂/∂t), Eqs. (5) and (6)
can be written as

E(r, t) =
D(r, t) − S(r, t)

ε0ε∞
(7)

S(r, t) + τ
∂S(r, t)

∂t
= ε0(εs − ε∞)E(r, t) (8)

Multiplying both sides of Eq. (7) by σ and substituting it into Eq. (1), we can get

∂D(r, t)
∂t

+
σ

ε0ε∞
D(r, t) = ∇× H(r, t) +

σ

ε0ε∞
S(r, t) − J(r, t) (9)

To derive the ETD scheme, multiplying Eq. (9) by eσt/ε0ε∞ and integrating the equation over a single
step from t = nΔt to t = (n + 1)Δt, we get

D
∣∣n+1
r = D |nr e

− σΔt
ε0ε∞ +

ε0ε∞
σ

(
1 − e

− σΔt
ε0ε∞

) [
∇× H

∣∣∣n+1/2
r +

σ

ε0ε∞
S

∣∣∣n+1/2
r − J

∣∣∣n+1/2
r

]
(10)

By the same procedure, multiplying Eq. (8) by et/τ and integrating the equation over a single step from
t = nΔt to t = (n + 1)Δt, we get

S
∣∣n+1
r = S |nr e−

Δt
τ + ε0(εs − ε∞)E |nr

(
1 − e−

Δt
τ

)
(11)
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According to Yee grid, the discretize formulations for High-Order ETD-ADE-FDTD can be given by
introducing the fourth-order central-difference scheme. For the sake of simplicity, in the following
sections we will employ a 2-D TEz case, and the formulation is given by

Dx

∣∣∣n+1
i,j = Dx

∣∣n
i,j e

− σΔt
ε0ε∞ +

ε0ε∞
σ

(
1 − e

− σΔt
ε0ε∞

)[
9
8

Hn+0.5
z |i,j − Hn+0.5

z |i,j−1

Δy

− 1
24

Hn+0.5
z |i,j+1 − Hn+0.5

z |i,j−2

Δy
+

σ

ε0ε∞

Sx

∣∣∣n+1
i,j + Sx

∣∣∣ni,j
2

− Jx

∣∣∣n+0.5
i,j

⎤
⎦ (12)

Dy

∣∣∣n+1
i,j = Dy

∣∣n
i,j e

− σΔt
ε0ε∞ +

ε0ε∞
σ

(
1 − e

− σΔt
ε0ε∞

) [
−9

8
Hn+0.5

z |i,j − Hn+0.5
z |i−1,j

Δx

+
1
24

Hn+0.5
z |i+1,j − Hn+0.5

z |i−2,j

Δx
+

σ

ε0ε∞

Sy

∣∣∣n+1
i,j + Sy

∣∣∣ni,j
2

− Jy

∣∣∣n+0.5
i,j

⎤
⎦ (13)

Hn+0.5
z |i,j = Hn−0.5

z |i,j − Δt

μ0

[(
9
8

En
y |i+1,j − En

y |i,j
Δx

− 1
24

En
y |i+2,j − En

y |i−1,j

Δx

)

−
(

9
8

En
x |i,j+1 − En

x |i,j
Δy

− 1
24

En
x |i,j+2 − En

x |i,j−1

Δy

)]
(14)

Eξ

∣∣∣n+1
i,j =

Dξ

∣∣∣n+1
i,j − Sξ

∣∣∣n+1
i,j

ε0ε∞
(15)

Sξ

∣∣∣n+1
i,j = Sξ

∣∣n
i,j e−

Δt
τ + ε0(εs − ε∞)Eξ

∣∣n
i,j

(
1 − e−

Δt
τ

)
(16)

In order to eliminate Sn+1 in Eqs. (12) and (13), substituting Eq. (16) into Eqs. (12) and (13), we have

Dx

∣∣∣n+1
i,j = Dx

∣∣n
i,j e

− σΔt
ε0ε∞ +

ε0ε∞
σ

(
1 − e

− σΔt
ε0ε∞

)[
9
8

Hn+0.5
z |i,j − Hn+0.5

z |i,j−1

Δy

− 1
24

Hn+0.5
z |i,j+1 − Hn+0.5

z |i,j−2

Δy
+

σ

2ε0ε∞
Sx

∣∣n
i,j

(
1 + e−

Δt
τ

)

+
σ(εs − ε∞)

2ε∞
Ex

∣∣n
i,j

(
1 − e−

Δt
τ

)
− Jx

∣∣∣n+0.5
i,j

]
(17)

Dy

∣∣∣n+1
i,j = Dy

∣∣n
i,j e

− σΔt
ε0ε∞ +

ε0ε∞
σ

(
1 − e

− σΔt
ε0ε∞

) [
−9

8
Hn+0.5

z |i,j − Hn+0.5
z |i−1,j

Δx

+
1
24

Hn+0.5
z |i+1,j − Hn+0.5

z |i−2,j

Δx
+

σ

2ε0ε∞
Sy

∣∣n
i,j

(
1 + e−

Δt
τ

)

+
σ(εs − ε∞)

2ε∞
Ey

∣∣n
i,j

(
1 − e−

Δt
τ

)
− Jy

∣∣∣n+0.5
i,j

]
(18)

From Eqs. (14)–(18), we know that the proposed method can be summarized in four steps. First, the
auxiliary variables S are obtained from Eq. (16). Second, explicitly update the x and y components
of E using Eq. (15). Third, explicitly update Hz by Eq. (14). Fourth, explicitly update the x and y
components of D using Eqs. (17) and (18).

3. NUMERICAL RESULTS

In order to validate the effectiveness of the proposed method, we consider transient fields in 2D cavity
with Debye dispersive media, shown in Fig. 1. A sinusoidally modulated Gaussian pulse is used as an
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incident electric current profile

Jy(t) = exp

[
−

(
t − Tc

Td

)2
]

sin 2πfc(t − Tc) (19)

where Td = 1/(2fc), Tc = 3Td and fc = 15 GHz. The computational domain consists of 90 × 90 cells
with uniform cell size of 0.2 mm (50 cells per λ, where λ is the wavelength corresponding to fc) and is
truncated by the PEC boundary in both x and y directions. The problem was solved by both the low-
and high-order ETD-FDTD methods. The time step Δt is 2 × 10−13 s, and the simulations were run
for 4800Δt. The dispersive medium square column with 3mm × 3 mm in Fig. 1 is Debye model, where
εs = 35.5, ε∞ = 2.05 and τ = 48.3 × 10−12. The electrical conductivity σ of the dispersive material is
0.01 s/m.

Figure 1. Diagram of computational domain for
ETD-HO-FDTD.
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Figure 2. The transient fields calculated with
ETD-FDTD and the proposed method.

Figure 2 shows the calculated results of the time domain waveform which is located at P (15 mm,
9mm) given by the low-order ETD-FDTD and the proposed method. From their profiles, one can
find that the accuracy of the proposed method is verified. For comparison, the computational domain
consists of 60 × 60 cells with uniform cell size of 0.3 mm used. The time step Δt is 3 × 10−13 s, and
the simulations were run for 3200Δt. The calculated results agree with that of low-order ETD-FDTD
method. From the calculated temporal electric fields, the resonant frequencies are obtained through
discrete Fourier transform (DFT).

Table 1 represents the required computational resource and computing time for the numerical
simulations. Compared with the low-order method, the high-order method with cell size of 0.3 mm
shows the reductions of 69% and 41% on computing time and memory usage respectively while the
relative error is 0.6%. The relative error of the resonant frequency is defined as: |flow-order-FDTD −
fhigh-order-FDTD|/flow-order-FDTD × 100%, where flow-order-FDTD is the reference solution from low-order-
FDTD, and fhigh-order-FDTD is the resonant frequency calculated from the proposed method. All
calculations have been performed on Intel (R) Core (TM) i5-4210 CPU with 8 GB RAM.

Table 1. Comparison of the computational efforts for the 2-D cavity.

Method
Δt

(ps)
Cell size
(mm)

Marching
on steps

Memory
(MB)

Resonant
frequency

Relative
error

CPU
time (s)

Low-order 0.2 0.3 4800 0.97 16.4 GHz - - 176

High-order 0.2 0.3 4800 0.97 16.4 GHz 0% 183
0.3 0.2 3200 0.57 16.3 GHz 0.6% 54
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4. CONCLUSION

An ETD-ADE-FDTD method based on a fourth-order central-difference discretization scheme for Debye
dispersive material is presented in this paper. Compared with the low-order ETD-FDTD, the proposed
method can reduce the calculation burden. One numerical example verifies the accuracy and efficiency
of the proposed method.
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