Vol. 72
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2018-08-19
Modeling of Optical Pulse Propagation in Kerr and Raman Nonlinear Dispersive Media Using JE-TLM Method
By
Progress In Electromagnetics Research M, Vol. 72, 69-77, 2018
Abstract
In this paper, we propose a simulation model of electromagnetic waves propagation in media with different kinds of dispersions. This model exploits the dependence of the polarization current density and the voltage electric in the context of the Transmission Line Matrix method with the Symmetrical Condensed Node (SCN-TLM) and novel voltage sources. By solving Maxwell's and polarization current density equations, the proposed model, named JE-TLM, gives a full solution of Maxwell's equations and polarization terms which describe the Lorentz linear dispersion, nonlinear instantaneous Kerr and retarded Raman effects. The scattering matrix characterizing the SCN with the new voltage sources is provided, and the numerical results are compared with those of the literature or with the theoretical ones.
Citation
Abdellah Attalhaoui, Hamid Bezzout, El Hadi El Ouardy, Mouna Hanna, Mohamed Habibi, and Hanan El Faylali, "Modeling of Optical Pulse Propagation in Kerr and Raman Nonlinear Dispersive Media Using JE-TLM Method," Progress In Electromagnetics Research M, Vol. 72, 69-77, 2018.
doi:10.2528/PIERM18052806
References

1. Franken, P. A., A. E. Hill, C. W. Peters, and G. Weinreich, "Generation of optical harmonics," Phys. Rev. Lett., Vol. 7, No. 4, 118-119, 1961.
doi:10.1103/PhysRevLett.7.118

2. Agrawal, G. P., Nonlinear Fiber Optics, 4th Ed., Academic Press, New York, 2007.

3. Hasegawa, A. and F. Tappert, "Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers: I. Anomalous dispersion," Appl. Phys. Lett., Vol. 23, No. 3, 142-144, 1973.
doi:10.1063/1.1654836

4. Tran, P., "A nonlinear photonic crystal: A numerical study," Optics Letters, Vol. 21, No. 15, 1138-1140, 1996.
doi:10.1364/OL.21.001138

5. Cherenkov, A. V., N. M. Kondratiev, V. E. Lobanov, A. E. Shitikov, D. V. Skryabin, and M. L. Gorodetsk, "Raman-Kerr frequency combs in microresonators with normal dispersion," Optics Express, Vol. 25, No. 25, 31148-31158, 2017.
doi:10.1364/OE.25.031148

6. Fanjoux, G., A. Sudirman, J.-C. Beugnot, L. Furfaro, W. Margulis, and T. Sylvestre, "Stimulated Raman-Kerr scattering in an integrated nonlinear optofluidic fiber arrangement," Optics Letters, Vol. 39, No. 18, 5407-5407, 2014.
doi:10.1364/OL.39.005407

7. Karras, C., W. Paa, D. Litzkendorf, S. Grimm, K. Schuster, and H. Stafast, "SiO2-Al2O3-La2O3 glass — A superior medium for optical Kerr gating at moderate pump intensity," Optical Materials Express, Vol. 6, No. 1, 125-130, 2016.
doi:10.1364/OME.6.000125

8. Garmire, E., "Nonlinear optics in daily life," Optics Express, Vol. 21, No. 25, 30532-30544, 2013.
doi:10.1364/OE.21.030532

9. Nakamura, S., N. Takasawa, and Y. Koyamada, "Comparison between finite-difference time-domain calculation with all parameters of Sellmeier’s fitting equation and experimental results for slightly chirped 12 fs laser pulse propagation in a silica fiber," IEEE J. of Lightwave Technol., Vol. 23, No. 2, 855-863, 2005.
doi:10.1109/JLT.2004.838873

10. Fujii, M., M. Tahara, I. Sakagami, W. Freude, and P. Russer, "High order FDTD and auxiliary differential equation formulation of optical pulse propagation in 2-D Kerr and Raman nonlinear dispersive media," IEEE J. Quantum Electron., Vol. 40, No. 2, 175-182, 2004.
doi:10.1109/JQE.2003.821881

11. Johns, P. B., "A symmetrical condensed node for the TLM method," IEEE Trans. Microwave Theory and Techniques, Vol. 35, 370-377, 1987.
doi:10.1109/TMTT.1987.1133658

12. Paul, J., C. Christopoulos, and D. W. P. Thomas, "Generalized material models in TLM. I.: Materials with frequency-dependent properties," IEEE Trans. Antennas Propag., Vol. 47, 1528-1534, 1999.
doi:10.1109/8.805895

13. Yaich, M. I. and M. Khalladi, "A novel SCN-TLM model for the analysis of ferrite media," IEEE Micro. Wireless Compn. Lett., Vol. 13, No. 6, 217-219, 2003.
doi:10.1109/LMWC.2003.814105

14. El Faylali, H., "Modeling of optical pulse propagation in Kerr and Raman nonlinear dispersive media using ADE-TLM method," International Journal of Advanced Engineering Technology, Vol. IV, No. II, 1064-1076, 2013.

15. Abrini, R., M. Ibn Yaich, and M. Khalladi, "Efficient modeling of isotropic cold plasma media using JE-TLM method," IEICE Electronics Express, Vol. 4, No. 15, 492-497, 2007.
doi:10.1587/elex.4.492

16. Charif, M., et al. "Accuracy and CPU time of JE-TLM, PLRC-TLM and CRC-TLM methods for plasma medium," Optik — Int. J. Light Electron. Op., Vol. 125, No. 13, 3138-3141, 2014.
doi:10.1016/j.ijleo.2013.12.014

17. El Faylali, H., M. Iben Yaich, and M. Khalladi, "Modeling of optical pulse propagation in nonlinear dispersive media using JE-TLM method," International Journal of Engineering Sciences & Research Technology, Vol. 2, No. 5, 1308-1312, 2013.

18. Taflove, A. and S. C. Hagness, Computational Electrodynamics: The Finite-Time Domain-Method, Artech House, Norwood, MA, 1995.

19. Greene, J. H. and A. Taflove, "General vector auxiliary differential equation finite-difference timedomain method for nonlinear optics," Journal Title Abbreviation, Vol. 14, No. 18, 1064-1076, 2006.

20. Khalladi, M., M. I. Yaich, N. Aknin, and M. Carrion, "Modeling of electromagnetic waves propagation in nonlinear optical media using HSCN-TLM method," IEICE Electronics Express, Vol. 2, No. 13, 384-391, 2005.
doi:10.1587/elex.2.384