Vol. 75
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2018-10-31
Hybrid Cross Approximation for the Electric Field Integral Equation
By
Progress In Electromagnetics Research M, Vol. 75, 79-90, 2018
Abstract
The boundary element method is considered for solving scattering problems and is accelerated using the hierarchical matrix format. Thus, some matrix blocks chosen by geometrical criteria are approximated by low-rank matrices using a robust compression method. In this paper, we validate the use of the hybrid cross approximation which is quite new in this area, and we apply it to several examples. The validation is done on a conducting sphere, as well as less canonical objects such as the scattering by a rough (Weierstrass) surface or a plane.
Citation
Priscillia Daquin, Ronan Perrussel, and Jean-René Poirier, "Hybrid Cross Approximation for the Electric Field Integral Equation," Progress In Electromagnetics Research M, Vol. 75, 79-90, 2018.
doi:10.2528/PIERM18052803
References

1. Darve, E., "The fast multipole method: Numerical implementation," Journal of Computational Physics, Vol. 160, 195-240, 2000.
doi:10.1006/jcph.2000.6451

2. Poirier, J.-R. and R. Perrussel, "Adaptive cross approximation for scattering by periodic surfaces," Progress In Electromagnetics Research M, Vol. 35, 97-103, 2014.
doi:10.2528/PIERM14011505

3. Borm, S. and Lars Grasedyck, "Hybrid cross approximation of integral operators," Numerische Mathematik, Vol. 101, 221-249, 2005.
doi:10.1007/s00211-005-0618-1

4. Rao, S. M., D. R. Wilton, and A. W. Glisson, "Electromagnetic scattering by surfaces of arbitrary shape," IEEE Transactions on Antennas and Propagation, Vol. 30, 409-417, 1982.
doi:10.1109/TAP.1982.1142818

5. Bebendorf, M., "Hierarchical matrices --- A means to efficiently solve elliptic boundary value problems," Lecture Notes in Computational Science and Engineering, Springer, 2008.

6. Bebendorf, M., "Approximation of boundary element matrices," Numerische Mathematik, Vol. 86, 565-589, 2000.
doi:10.1007/PL00005410

7. Grasedyck, L. and W. Hackbusch, "Construction and arithmetics of H-matrices," Computing, Vol. 70, 295-334, 2003.
doi:10.1007/s00607-003-0019-1

8. Bebendorf, M., "A hierarchical LU decomposition-based preconditioners for BEM," Computing, Vol. 74, 225-247, 2005.
doi:10.1007/s00607-004-0099-6

9. Grasedyck, L., "Adaptive recompression of H-matrices for BEM," Computing, Vol. 74, 205-223, 2005.
doi:10.1007/s00607-004-0103-1

10. Siau, J., et al. "Hybrid cross approximation for a magnetostatic formulation," IEEE Transactions on Magnetics, Vol. 51, No. 3, 1-4, 2015.
doi:10.1109/TMAG.2014.2364739

11. Saad, Y. and M. H. Schultz, "GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems," SIAM J. Sci. and Stat. Comput., Vol. 7, No. 3, 856-869, 1985.
doi:10.1137/0907058

12. Berizzi, F. and E. Dalle-Mese, "Fractal analysis of the signal scattered from the sea surface," IEEE Transactions on Antennas and Propagation, Vol. 47, No. 2, 324-338, 1999.
doi:10.1109/8.761073

13. Franceschetti, G., M. Migliaccio, and D. Riccio, "An electromagnetic fractal-based model for the study of fading," Radio Science, Vol. 31, 1749-1759, 1996.
doi:10.1029/96RS02811