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Hybrid Cross Approximation for the Electric Field Integral Equation

Priscillia Daquin, Ronan Perrussel, and Jean-René Poirier*

Abstract—The boundary element method is considered for solving scattering problems and is
accelerated using the hierarchical matrix format. For this format, some matrix blocks, whose choice
is based on geometrical criteria, are approximated by low-rank matrices using a robust compression
method. In this paper, we validate the use of the hybrid cross approximation which is quite new in this
area, and we apply it to several examples such as the scattering by a conducting sphere, by a rough
(Weierstrass) surface and by a plane.

1. INTRODUCTION

In electromagnetics, it is common to consider the boundary element method (BEM) to solve the Maxwell
equations describing scattering problems by a conducting surface. This method leads to an a priori
algorithmic complexity in O(N2), with N being the number of degrees of freedom (dofs). This number
is related to the discretization step of the mesh, and it is commonly admitted that the mesh of a
given surface needs to have a discretization step smaller than λ/10, with λ being the wavelength of the
incident electromagnetic wave. This discretization step can even be smaller when the studied surface is
not smooth, as the case with rough surfaces such as the sea. As a result, such simulations can become
crippling with the increasing number of dofs.

In this paper, we consider the hierarchical matrix (H) format to lessen the complexity of the BEM
for the electric field integral equation (EFIE). Some chosen blocks of the matrix are approximated by
low-rank matrices (rk-matrices) using a compression technique, and consequently the overall numerical
complexity is expected to be in O(N log(N)) instead of O(N2). If it is now customary to use the fast
multipole method (FMM) [1] or the adaptive cross approximation (ACA) [2] as a compression method
to compute those rk-matrices, the hybrid cross approximation (HCA) is still rarely used even though
it has advantages over both the FMM and ACA [3]. We use the combination of the H format and the
HCA to solve the EFIE in 3D. We then show the enhancement of the numerical complexity brought by
this method as well as its validity. We finally apply this formalism to treat more challenging examples.

2. ELECTRIC FIELD INTEGRAL EQUATION (EFIE)

In this work, we consider the scattering of an incident electromagnetic wave by a perfectly conducting
surface Γ. Let us denote Einc as the incident electric field of frequency f = ω/2π and wavelength
λ = c/f , and c as the speed of light in vacuum. The incident field Einc induces surface currents J on Γ.
The EFIE is written as [1](

∇r
1

iω0

∫
Γ
G(xΓ,yΓ)∇r · J(yΓ)dyΓ − iω0μ0

∫
Γ
G(xΓ,yΓ)J(yΓ)dyΓ

)
∧ n = −Einc(xΓ) ∧ n. (1)
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The discretization of this formulation leads to solving the linear system

ZI = V, (2)

with Z ∈ C
N×N the impedance matrix, I ∈ C

N×P the unknown induced currents and V ∈ C
N×P the

right-hand side representing the excitation vectors, N the number of dofs, and P the number of right-
hand sides (P � N). Those right-hand sides differ from each other by the value of the polarization
direction of incident electric field Einc.

In the case of the EFIE with a triangular mesh, we get for 1 ≤ i, j ≤ N and 1 ≤ k ≤ P [1, 4]:⎧⎪⎪⎨
⎪⎪⎩
zij =

∫
Γ×Γ

g(xΓ,yΓ)
(
fi(yΓ) · fj(xΓ) − 1

k2
0

∇r · fi(yΓ)∇r · fj(xΓ)
)

dyΓdxΓ, (3)

ejk =
i

ωμ0

∫
Γ
Einc

k (xΓ) · fj(xΓ)dxΓ. (4)

where fi is the basis function regarding the ith edge of the mesh as defined by Rao et al. [4], g = G the
kernel function, and Einc

k the incident electric field polarized in the kth direction.
Matrix Z a priori requires a storage and a matrix-vector product complexity proportional to N2.

To lessen this complexity, the kernel g can be locally approximated by a degenerated kernel g̃, leading
to the building of a data-sparse matrix stored in the H format.

3. HIERARCHICAL MATRICES (H-MATRICES)

3.1. Clustering

The H representation [5] is a data-sparse matrix format that enables the memory storage and the
complexity of the arithmetic operations, as the matrix-vector product, to scale as N log(N) instead of
N2. Consequently, it allows solving large-scale problems efficiently using the BEM.

The hierarchy is defined by a clustering technique of the dofs, which is performed recursively by
successive bisections of the boxes bounding different dofs, until each bounding box contains a maximum
of nmax dofs. This leads to a binary tree for the row and column indices of the matrix and a quadtree
embodying the hierarchical matrix block structure.

The leaves are sorted as they do or do not respond to an admissibility condition over the distance
between interacting clusters. A leaf is said admissible (resp. non admissible) if it represents “far”
(resp. “near”) interactions. The admissible leaves correspond to admissible matrix blocks that can be
approached by rk-matrices without a damaging loss of accuracy, while non-admissible blocks are not to
be compressed.

3.2. Compression and Coarsening of a H
Let us consider an admissible block A|r̂×ĉ of a H A, with r̂ and ĉ being the sets of dofs indices in
two distant clusters. We can compress A|r̂×ĉ by replacing the kernel g with a degenerate kernel g̃ or
by directly approximating A|r̂×ĉ ≈ Ã|r̂×ĉ. Different approaches exist to achieve this aim, such as the
FMM [1] or the ACA [6]. This last approach leads to a low-rank approximation of precision εACA as

A|r̂×ĉ ≈ UV H , (5)

where A|r̂×ĉ ∈ C
m×n, U ∈ C

m×k, V ∈ C
n×k, and k is the rank of the approximation.

It is then possible to lower the rank of the approximation UV H by applying a truncated singular
value decomposition which is adapted to format (5) (rk-SVD), followed by a truncation at precision
εACA. This gives

A|r̂×ĉ ≈ Ã|r̂×ĉ = Uk′Xk′V H
k′ , (6)

with Uk′ ∈ C
m×k′

, Vk′ ∈ C
n×k′

, Xk′ ∈ R
k′×k′

the diagonal matrix of the dominant singular values, and
k′ the new rank of the approximation Ã|r̂×ĉ, k′ ≤ k.
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Format (6) requires less memory than format (5) as soon as k′ < k, and allows to obtain the
Frobenius norm of Ã|r̂×ĉ quickly as it equals the Frobenius norm of the diagonal real matrix Xk′ .
Considering format (6) for the rk-matrix is moreover useful for the coarsening explained below.

Once H is assembled, we can coarsen it by applying an algorithm consisting in the recursive
agglomeration of two rk-matrices into one rk-matrix with precision εcoars. that controls the overall
accuracy of the H [7]. It allows for simplifying the hierarchical structure of the H (see Figure 1) and
lowering again its memory storage (see Figure 2).

(a) (b)

Figure 1. Hierarchical representation of the impedance matrix in the case of an incident wave
(f = 3GHz) scattered by a metallic cylinder (r = 0.1 m = λ/100), with 937 dofs, before and after
coarsening (εcoars. = 10−14). (a) Before coarsening. (b) After coarsening.
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Figure 2. Memory storage of a H for different values of εcoars..

3.3. Arithmetic of H-Matrices

As the H structure is decomposed into blocks of different sizes and formats, a specific arithmetic has been
implemented to enable the solution of the linear system (2). It consists in classical arithmetic operations
computed recursively within the levels of the hierarchy. The use of rk-matrices for admissible leaves
leads to approximations controlled by the same precision ε which was used for the compression.

The resulting arithmetic includes a H-vector product, an approximate sum of two H−matrices and
a formatted multiplication [6]. The algorithmic complexity of all these operations scales as N log(N) [8].
The computation time will be further enhanced on coarsened H−matrices than on H−matrices which
are only locally compressed.
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These operations allow for developing a H-LU decomposition, which is an approximate recursive
LU decomposition of a H, computed with a prescribed precision εLU [8, 9].

4. HYBRID CROSS APPROXIMATION (HCA)

4.1. Principles

This method can be defined for a kernel function g such as

g(x,y) = DxDyγ(x,y), (7)

where operators Dx and Dy are differential operators respectively according to x and y, and γ is an
asymptotically smooth function, especially being well suited for the ACA computation [6].

The HCA, first introduced in [3], is an algorithm based on the cross approximation at a functional
level, i.e., directly on γ. It differs from the ACA, where the cross approximation is applied at the matrix
level. The HCA is more dependent on the formulation than the ACA but does not require to know and
use an explicit kernel expansion as for the classical FMM. Thus it can be applied to many kernels and
discretization techniques with a slight adaptation.

The coefficients of matrix Z built with the Galerkin method are defined for 1 ≤ i, j ≤ N as

zij =
∫

Γ×Γ
ϕi(x)g(x,y)ψj (y)dxdy, (8)

g being the kernel function, φi the ith basis function and ψj an appropriate test function.
For a pair of admissible subdomains (ΩI ,ΩJ ), I (resp. J ) being the set of indexes of the dofs

contained in ΩI (resp. ΩJ ), with nI = |I| (resp. nJ = |J |) basis functions over ΩI (resp. ΩJ ), we
consider a degenerate kernel function g̃ to define an approximation Z̃ of Z as

z̃ij =
∫

Γ×Γ
ϕi(x)g̃(x,y)ψj(y)dxdy. (9)

4.1.1. Choice of the Pivots

The first step of the HCA consists in selecting pivot points belonging to BI × BJ , with BI (resp. BJ )
being the bounding box of ΩI (resp. ΩJ ). For this purpose it is possible to apply the ACA on a matrix
whose entries are evaluations of γ on couples of points belonging to BI × BJ . These points can be
randomly chosen points in the boxes BI and BJ , or coincide with interpolation points in the same
boxes. Here we choose to consider the tensorized Chebyshev interpolation points of the bounding boxes
BI and BJ as in [3, 10].

To be more specific, let us consider mC ∈ N
∗. The m3

C Chebyshev interpolation points of a
bounding box B are defined as ϕ(C)

ijk = (p(C)
i , p

(C)
j , p

(C)
k ) where p(C)

i is the ith Chebyshev node of order
mC for 0 ≤ i ≤ mC − 1 (see Figure 3). Applying the ACA with a precision εHCA = εACA on those
points in the bounding boxes BI and BJ provides two lists of pivot points (xi)ki=1 in BI and (yj)kj=1 in
BJ , with k the approximation rank provided by the ACA.

4.1.2. Separation of Variables

We choose a first pivot point (x1,y1) such as γ(x1,y1) �= 0, and we define function γ1, a first
approximation of γ, as

γ1(x,y) =
γ(x,y1)γ(x1,y)

γ(x1,y1)
. (10)

We note r1 = γ − γ1 the residue of this approximation, and we define, choosing a second pivot point
(x2,y2), a new approximation γ2 of γ as

γ2(x,y) = γ1(x,y) +
r1(x,y2)r1(x2,y)

r1(x2,y2)
, (11)
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Figure 3. Grid of Chebyshev interpolation points on a cubic bounding box B (mC = 4). Points p+

and p− define the bounding box B.

of residue r2 = γ − γ2. Repeating this process until the norm of the residue rk is lower than εHCA

leading to a degenerate kernel g̃ that can be written as g̃(x,y) = DxDyγ̃(x,y) with

γ̃(x,y) =

⎛
⎝γ(x,y1)

...
γ(x,yk)

⎞
⎠

T

M−1

⎛
⎝γ(x1,y)

...
γ(xk,y)

⎞
⎠ (12)

where matrix M = (mij)1≤i,j≤k is defined as mij = γ(xi,yj), (xi)ki=1, and (yj)kj=1 is the pivot points
resulting from the ACA algorithm proposed in Section 4.1.1.

The LU decomposition of M as M = LU gives M−1 = CDT with C = U−1 = (cij)1≤j≤i≤k and
D = L−T = (dij)1≤j≤i≤k. Thus we get

γ̃(x,y) =
k∑

m=1

k∑
n=1

(
k∑

l=1

cmldnl

)
γ(x,ym)γ(xn,y), (13)

and then

g̃(x,y) =
k∑

l=1

(
k∑

m=1

cmlDxγ(x,ym)

)(
k∑

n=1

dnlDyγ(xn,y)

)
. (14)

Hence

z̃ij =
k∑

l=1

(
k∑

m=1

cml

∫
Γ
ϕi(x)Dxγ(x,ym)dx)

)(
k∑

n=1

dnl

∫
Γ
ψj(y)Dyγ(xn,y)dy

)
. (15)

Defining matrices A = (aim)1≤i≤|I|,1≤m≤k and B = (bjn)1≤j≤|J |,1≤n≤k such as⎧⎪⎪⎪⎨
⎪⎪⎪⎩
aim =

∫
Γ
φi(x)Dxγ(x,ym)dx,

bjn =
∫

Γ
ψj(y)Dyγ(xn,y)dy,

(16)

(17)

leads to

z̃ij =
k∑

l=1

(
k∑

m=1

aimcml

)(
k∑

n=1

bjndnl

)
. (18)



84 Daquin, Perrussel, and Poirier

In other words, Z̃ is a rk-matrix in format (5) approaching Z, as Z̃ = UV H with U = AC and
V = (BD)H . In order to obtain it in format (6) we only need to compute an rk-SVD.

4.2. Application of the HCA Principles to the EFIE

The EFIE formulation is composed of two double integrals: the basis functions are vectorial in one of
them while they are scalar in the other. Let us consider Eq. (3), denote γ(x,y) = g(x,y) = G(x,y)
and define matrices Ȧ ∈ C

|I|×k, Ḃ ∈ C
|J |×k, Ap ∈ C

|I|×k, and Bp ∈ C
|J |×k with p ∈ {x, y, z} whose

coefficients are ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ȧim =
∫

Γ
∇rfi(x)g(x,ym)dx,

ḃjn =
∫

Γ
∇rfj(y)g(xn,y)dy,

aim,p =
(∫

Γ
fi(x)g(x,ym)dx

)
· up,

bjn,p =
(∫

Γ
fj(y)g(xn,y)dy

)
· up,

(19)

(20)

(21)

(22)

where (up)p∈{x,y,z} is the canonical vector basis of R
3. We have

z̃ij =
k∑

l=1

( ∑
p∈{x,y,z}

( k∑
m=1

aim,pcml

)( k∑
n=1

bjn,pdnl

)
− 1
k2

0

( k∑
m=1

ȧimcml

)( k∑
n=1

ḃjndnl

))
. (23)

Hence
Z̃ =

∑
p∈{x,y,z}

UpV
H
p + U̇ V̇ H (24)

with Up = ApC ∈ (C)|I|×k, Vp = (BpD)H ∈ (C)|J |×k, U̇ = −1/k2
0ȦC ∈ C

|I|×k and V̇ = (ḂD)H ∈
C
|J |×k. Building matrices U ∈ C

|I|×4k and V ∈ C
|J |×4k such as{

Û =
[
Ux Uy Uz U̇

]
, (25)

V̂ =
[
Vx Vy Vz V̇

]
, (26)

we finally get
Z̃ = UV H . (27)

4.3. Setting of εHCA and mC

We applied the HCA algorithm on the case of a conducting sphere of radius r = 1m at the frequency
f = 300 MHz with several numbers of dofs. On one hand, we set parameter εHCA to 10−5 — which
is “very” accurate [3] — in order to evaluate the influence of the choice of the parameter mC on the
matrix precision. On the other hand, we set parameter mC to 5 and vary the value of εHCA. In both
cases the matrix accuracy is evaluated performing a H-vector product, which does not induce any other
approximation than those from the H compression. More precisely, a random vector x is considered,
and we perform the matrix-vector product Zx = b and the H-vector product Z̃x = b̃; the “accuracy”
corresponds to ‖b − b̃‖2. The results of these simulations can be seen in Figures 4 and 5.

These graphics validate the method accuracy. Figure 5 shows that for εHCA = 10−5, the relative
error is really similar for mC = 4 and mC = 5, but the value mC = 3 is already sufficient to obtain
an error inferior to εHCA. Thus for the particular value εHCA = 10−5, mC = 4 seems to be a sufficient
value.
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Figure 4. Accuracy of the HCA for different values of εHCA (mC = 5).
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Figure 5. Accuracy of the HCA for different values of mC (εHCA = 10−5).

4.4. Time Repartition

The HCA algorithm can be divided into several steps: the building of γ̃ consisting in the ACA on the
pivot points and a LU factorization (step 1), the building of matrices Ȧ, Ḃ, Ap, and Bp consisting in
numerical integrations (step 2), the building of U and V H consisting in matrix multiplications (step 3)
and finally the rk-SVD (step 4). Each of those steps depends differently on εHCA, mC or both. We
can evaluate their time repartition within the HCA algorithm for different values of N , as presented in
Table 1 (εHCA = 10−4, mC = 4).

Table 1. Time ratio of each step within the HCA algorithm.

N = 4521 N = 18394 N = 69930
t (s) % ttot. t (s) % ttot. t (s) % ttot.

Building of γ̃ (step 1) 8.100 9.49 45.884 8.01 153.388 7.23
Integrations (step 2) 41.468 48.59 300.116 52.41 1223.888 57.67

Multiplications (step 3) 1.608 1.88 9.048 1.58 33.296 1.57
rk-SVD (step 4) 34.176 40.04 217.540 37.99 711.484 33.53
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This table allows us to notice that most of the HCA time is spent in the integration step. This
finding is interesting, knowing that the HCA algorithm computes only simple integrals, versus double
integrals for the ACA. We will be able to check this advantage over the ACA in the next section.

5. COMPUTATIONAL PERFORMANCES AND COMPARISON WITH ACA

We compare the performances of the HCA with the usual compression method ACA in terms of
compression rate and computational time. The linear system is solved with the generalized minimal
residual method (GMRES [11]) with the tolerance εGMRES. In this case the complexity of an iteration
is N log(N) as for the H-vector product. To improve the convergence, a right preconditioner is used
and computed by the H-LU decomposition with accuracy εprec. In order to build this preconditioner,
we first coarsen the initial H with the precision εprec and we apply afterwards a H-LU decomposition
on this simplified H with the same precision.

5.1. A Canonical Example: The Metallic Sphere

We first consider a metallic sphere of radius 1 m. We compute the relative error on the bistatic radar
cross-section (RCS) between the numerical solution of the problem (2) using the ACA or the HCA
algorithm and the analytic solution provided by Mie series. We set the value of εHCA according to
mC as εHCA = 10−mC , and εGMRES to 10−12 in order to focus on the error due to the compression
techniques.

It is shown on Figure 6 that the two methods have roughly the same behavior following the
convergence rate of the BEM up to reach the desired accuracy given for the compression method (εACA

or εHCA).
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Figure 6. Relative error on bistatic RCS |σ − σref |/|σref | (f = 0.6 GHz).

We focus now on the compression rate, i.e., the ratio between the storages for the data-sparse
format and for the full format, in Table 2. A mesh with 69930 unknowns is considered, and simulations
are performed for frequencies 0.6 GHz and 1.2 GHz corresponding respectively to 20 and 10 points per
wavelength. The involved parameters are εACA = εHCA = εGMRES = 10−4, mC = 4, and εprec = 10−2.

In Table 2 it is shown that

• the compression rates are roughly equivalent, and they are “very” close for the preconditioning
matrix (which corresponds to a strong compression keeping only large singular values for the rk-
matrices);

• assembly rate seems to depend more on BEM properties (value of nG) than on the compression
method used;

• as expected the compression rate is better for low frequencies.
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Table 2. Compression rates for the metallic sphere.

λ/10 mesh λ/20 mesh
ACA HCA ACA HCA

nG 1 3 1 3 1 3 1 3
Assembly 11.02% 9.70% 11.02% 9.71% 8.90% 7.96% 8.90% 7.97%

Coarsening 7.19% 6.24% 7.23% 6.38% 5.18% 4.65% 5.55% 5.08%
Coarsening at εprec 3.94% 3.92% 3.94% 3.92% 2.18% 2.18% 2.18% 2.18

The corresponding computation times are provided in Table 3 for frequency 0.6 GHz.

Table 3. Computation times (s) for the metallic sphere.

ACA HCA
nG 1 3 1 3

Assembly 1275 4618 1415 2825
Coarsening 612 476 746 545

Coarsening at εprec 246 115 162 135
H-LU decomposition 1397 870 998 919

GMRES 11.92 12.46 17.44 12.77

Following the observed compression rate and the time partition properties of both methods (see
Table 1), we observe an advantage for the HCA in terms of assembly time when the number of Gauss-
Legendre integration points increases which is the case when a good accuracy is desired. This result
illustrates the advantage of the HCA in this case.

5.2. More Challenging Examples

As in the previous subsection, we set: εACA = εHCA = εGMRES = 10−4, mC = 4 and εprec = 10−2.

5.2.1. Weierstrass Rough Surfaces

Many electromagnetic problems and engineering applications are formulated in terms of scattering by
a rough surface. A common example is the study of the remote sensing on the sea surface [12] or rough
grounds.

We choose to model rough surfaces as 3D Weierstrass surfaces [13], which is a set of points
ϕ = (x, y,W (x, y)) ∈ R

3, where W (x, y) is written as

W (x, y) = h

n2∑
n=n1

b(Df−3)n sin(bn)
(
x cos(ψn) + y sin(ψn)

)
, (28)

where h is the height of the surface, Df the fractal dimension, n1 (resp. n2) the first (resp. last) scale,
b characterizes the lacunarity of the fractal surface, ψn = (2n−1)π

n2
and x (resp. y) running from 0 to the

length l (resp. width w). These surfaces can be really irregular and thus need to be finely discretized
in order to be accurately described. This can lead to big problems in terms of dofs, and thus the H
format seems well suited for such a case. We study a case with the following parameters: Df = 2.5,
n1 = 0, n2 = 5 and b = 2. We use a mesh with 71689 unknowns which means 25 points per wavelength
for the average step.

Compression rates and computation times are respectively reported in Tables 4 and 5. These results
lead to conclusions similar to the case of the sphere. Other simulations confirm this conclusion.
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Table 4. Compression rates for the rough surface (71689 unknowns).

ACA HCA
nG 1 3 1 3

Assembly 7.22% 6.18% 7.22% 6.17%
Coarsening 4.65% 3.99% 5.08% 4.45%

Coarsening at εprec 1.34% 1.33% 1.34% 1.33%

Table 5. Computation times (s) for the rough surface (71689 unknowns).

ACA HCA
nG 1 3 1 3

Assembly 1255 3851 1203 2003
Coarsening 555 352 565 428.0

Coarsening at εprec 147 100 157 202
H-LU decomposition 406 322 483 429

GMRES 13.62 11.19 16.76 14.83

5.2.2. Fokker Plane RCS

We end this study by the scattering of a plane wave on a plane. The simulations will be performed
at frequencies 0.6 GHz (77190 unknowns mesh) and 1.2 GHz (308760 unknowns mesh) with high mesh
size of 8 points per wavelength. Only the case nG = 3 is considered for f = 1.2 GHz. We consider
computation times in Tables 6 and 7, and the corresponding RCS for f = 0.6 GHz is given Figure 7.

Tables 6 and 7 confirm the advantages of HCA in terms of computation times. It is even more
obvious in Table 7. Note that this mesh is a very irregular one. It may be an explanation to the

Table 6. Computation times (s) for the Fokker plane (77190 unknowns, f = 0.6 GHz).

ACA HCA
nG 1 3 1 3

Assembly 4146 8195 2234 2878
Coarsening 572 492 683 543

Coarsening at εprec 240 241 196 179
H-LU decomposition 7952 7718 6619 5721

GMRES 515 578 553 585

Table 7. Computation times for the Fokker plane (308760 unknowns, f = 1.2 GHz).

ACA HCA
Assembly (s) 47012 12812

Coarsening (s) 3795 3422
Coarsening at εprec (s) 1402 949
H-LU decomposition (s) 59527 34520

GMRES (s) 2647 2488
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Figure 7. Bistatic RCS of the Fokker plane (f = 0.6 GHz).

difficulties of ACA to get an optimal compression. Accuracy results in terms of RCS Figure 7 are
“satisfying” as the bistatic RCS obtained with the HCA fits well with the one given by the ACA for
both values of nG.

6. CONCLUSION

In this paper we have presented the implementation of the hybrid cross approximation applied to
scattering problems solved by the EFIE. This technique is an alternative to the adaptive cross
approximation and has the advantage of being directly applied without any heuristics. Indeed, it does
not depend on an evaluation of the error (which presents a risk of failure in the ACA algorithm). The
obtained results show that the method could give equivalent results in terms of accuracy and improve
the computation times.
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