Vol. 81
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2018-07-19
Quad-Band Wearable Slot Antenna with Low SAR Values for 1.8 GHz DCS, 2.4 GHz WLAN and 3.6/5.5 GHz WiMAX Applications
By
Progress In Electromagnetics Research B, Vol. 81, 163-182, 2018
Abstract
In this paper, a quad-band wearable slot antenna with low specific absorption rate (SAR) is presented. By cutting an inverted V-shaped slot with its arms further extended towards the center of the circular patch, multiple resonant modes of the antenna can be excited to operate on 1.8 GHz DCS, 2.4 GHz WLAN and 3.6/5.5 GHz WiMAX bands. The measured peak gains and impedance bandwidths are about 4.91/7.84/2.58/4.12 dBi and 320/60/80/180 MHz for the 1.8/2.4/3.6/5.5 GHz bands respectively. The SAR of the proposed antenna has been measured using a three layer human tissue model. The estimated SAR values at all the resonant frequencies are well below the threshold limit of 2 W/Kg, which ensures its viability for wearable applications. In order to approximate different parts of the human body, the SAR values have been estimated for three surface sizes, 120 × 120 mm2, 220 × 220 mm2 and 320 × 320 mm2, of the human tissue model, and results are compared. Frequency detuning of the proposed antenna due to bending along x, y and x-y planes has also been carried out and discussed. Further, on arm effect on the antenna performance is investigated, and results are presented. The simulated and measured results are in good agreement, which validates the use of proposed wearable antenna in DCS/WLAN/WiMAX bands.
Citation
Danvir Mandal, and Shyam Sundar Pattnaik, "Quad-Band Wearable Slot Antenna with Low SAR Values for 1.8 GHz DCS, 2.4 GHz WLAN and 3.6/5.5 GHz WiMAX Applications," Progress In Electromagnetics Research B, Vol. 81, 163-182, 2018.
doi:10.2528/PIERB18052504
References

1. Sundarsingh, E. F., S. Velan, M. Kanagasabai, A. K. Sarma, C. Raviteja, and M. G. N. Alsath, "Polygon-shaped slotted dual-band antenna for wearable applications," IEEE Antennas and Wireless Propagation Letters, Vol. 13, 611-614, 2014.
doi:10.1109/LAWP.2014.2313133

2. Lee, K. F., S. L. S. Yang, and A. A. Kishk, "Dual- and multiband U-slot patch antennas," IEEE Antennas and Wireless Propagation Letters, Vol. 7, 645-647, 2008.
doi:10.1109/LAWP.2008.2002262

3. Lu, J. H. and B. J. Huang, "Planar compact slot antenna with multi-band operation for IEEE 802.16m application," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 3, 1411-1414, Mar. 2013.
doi:10.1109/TAP.2012.2227440

4. Saghati, A. P., M. Azarmanesh, and R. Zaker, "A novel switchable single- and multifrequency triple-slot antenna for 2.4-GHz bluetooth, 3.5-GHz WiMax, and 5.8-GHz WLAN," IEEE Antennas and Wireless Propagation Letters, Vol. 9, 534-537, 2010.
doi:10.1109/LAWP.2010.2051401

5. Dang, L., Z. Y. Lei, Y. J. Xie, G. L. Ning, and J. Fan, "A compact microstrip slot triple-band antenna for WLAN/WiMAX applications," IEEE Antennas and Wireless Propagation Letters, Vol. 9, 1178-1181, 2010.
doi:10.1109/LAWP.2010.2098433

6. Hu, W., Y. Z. Yin, P. Fei, and X. Yang, "Compact triband square-slot antenna with symmetrical L-strips for WLAN/WiMAX applications," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 462-465, 2011.
doi:10.1109/LAWP.2011.2154372

7. Cao, Y. F., S. W. Cheung, and T. I. Yuk, "A multi-band slot antenna for GPS/WiMAX/WLAN systems," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 3, 952-958, Mar. 2015.
doi:10.1109/TAP.2015.2389219

8. Hong, Y., J. Tak, J. Baek, B. Myeong, and J. Choi, "Design of a multiband antenna for LTE/GSM/UMTS band operation," International Journal of Antennas and Propagation, Vol. 2014, Article ID 548160, 9 pages, 2014.

9. Wei, Y. F. and C. Roblin, "Multislot antenna with a screening backplane for UWB WBAN applications," International Journal of Antennas and Propagation, Vol. 2012, Article ID 731912, 12 pages, 2012.

10. Gao, G. P., B. Hu, S. F. Wang, and C. Yang, "Wearable circular ring slot antenna with EBG structure for wireless body area network," IEEE Antennas and Wireless Propagation Letters, Vol. 7, 434-437, 2018.
doi:10.1109/LAWP.2018.2794061

11. Kusuma, A. H., A. F. Sheta, I. Elshafiey, Z. Siddiqui, M. A. Alkanhal, S. Aldosari, and S. A. Alshebeili, "A new low SAR antenna structure for wireless handset applications," Progress In Electromagnetic Research, Vol. 112, 23-40, 2011.
doi:10.2528/PIER10101802

12. Faruque, M. R. I., M. I. Hossain, and M. T. Islam, "Low specific absorption rate microstrip patch antenna for cellular phone applications," IET Microwaves, Antennas & Propagation, Vol. 9, No. 14, 1540-1546, 2015.
doi:10.1049/iet-map.2014.0861

13. Gemio, J., J. Parron, and J. Soler, "Human body effects on implantable antennas for ISM bands applications: Models comparison and propagation losses study," Progress In Electromagnetic Research, Vol. 110, 437-452, 2010.
doi:10.2528/PIER10102604

14. Klemm, M. and G. Troester, "EM energy absorption in the human body tissues due to UWB antennas," Progress In Electromagnetic Research, Vol. 62, 261-280, 2006.
doi:10.2528/PIER06040601

15. Kivekas, O., T. Lehtiniemi, and P. Vainikainen, "On the general energy absorption mechanism inthe human tissue," Microwave and Optical Technology Letters, Vol. 43, No. 3, 195-201, Nov. 2004.
doi:10.1002/mop.20418

16. Yan, S. and G. A. E. Vandenbosch, "Radiation pattern reconfigurable wearable antenna based on metamaterial structure," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 1715-1718, 2016.
doi:10.1109/LAWP.2016.2528299

17. Joshi, J. G., S. S. Pattnaik, and S. Devi, "Metamaterial embedded wearable rectangular microstrip patch antenna," International Journal of Antennas and Propagation, Vol. 2012, Article ID 974315, 9 pages, 2012.

18. Hu, B., G. P. Gao, L. L. He, X. D. Cong, and J. N. Zhao, "Bending and on-arm effects on a wearable antenna for 2.45GHz body area network," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 378-381, 2016.
doi:10.1109/LAWP.2015.2446512

19. Balanis, C. A., Antenna Theory: Analysis and Design, 3rd Ed., John Wiley & Sons, 2005.

20. FCC: Body tissue dielectric parameters, http://www.fcc.gov/oet/rfsafety/dielectric.html.