Vol. 72
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2018-08-27
A Novel Non-Homogeneous STAP Algorithm for Target-Like Signal Elimination Based on Sparse Reconstruction
By
Progress In Electromagnetics Research M, Vol. 72, 153-163, 2018
Abstract
Space-time adaptive processing (STAP) for airborne radar employs training samples to estimate clutter covariance matrix (CCM). However, the target-like signals contained in the training samples severely corrupt the accuracy of the CCM. This paper proposes a novel non-homogeneous STAP algorithm for target-like signal elimination based on reduced-dimension sparse reconstruction (RDSR) to overcome this issue. The proposed algorithm exploits the high-resolution angle-Doppler spectrum obtained by RDSR to estimate and eliminate target-like signals. Theoretical analysis and simulation results show that the proposed algorithm effectively suppresses clutter and improves the performance of STAP in non-homogeneous environments.
Citation
Qi Zhang, Mingwei Shen, Jianfeng Li, Di Wu, and Dai-Yin Zhu, "A Novel Non-Homogeneous STAP Algorithm for Target-Like Signal Elimination Based on Sparse Reconstruction," Progress In Electromagnetics Research M, Vol. 72, 153-163, 2018.
doi:10.2528/PIERM18051006
References

1. Brennan, L. E. and I. S. Reed, "Theory of adaptive radar," IEEE Transactions on Aerospace and Electronic Systems, Vol. 9, No. 2, 237-252, 1973.
doi:10.1109/TAES.1973.309792

2. Melvin, W. L., "A STAP overview," IEEE Aerospace and Electronic Systems Magazine, Vol. 19, No. 1, 19-35, 2004.
doi:10.1109/MAES.2004.1263229

3. Reed, I. S., J. D. Mallet, and L. E. Brennan, "Rapid convergence rate in adaptive arrays," IEEE Transactions on Aerospace and Electronic Systems, Vol. 10, No. 6, 853-863, 1974.
doi:10.1109/TAES.1974.307893

4. Jeon, H., Y. Chung, W. Chung, et al. "Clutter covariance matrix estimation using weight vectors in knowledge-aided STAP," Electronics Letters, Vol. 53, No. 8, 560-562, 2017.
doi:10.1049/el.2016.4631

5. Ciuonzo, D., A. D. Maio, and D. Orlando, "A unifying framework for adaptive radar detection in homogeneous plus structured interference — Part II: Detectors design," IEEE Transactions on Signal Processing, Vol. 64, No. 11, 2907-2919, 2016.
doi:10.1109/TSP.2016.2519005

6. Ciuonzo, D., A. D. Maio, and D. Orlando, "On the statistical invariance for adaptive radar detection in partially homogeneous disturbance plus structured interference," IEEE Transactions on Signal Processing, Vol. 65, No. 5, 1222-1234, 2017.
doi:10.1109/TSP.2016.2620115

7. Ciuonzo, D., D. Orlando, and L. Pallotta, "On the maximal invariant statistic for adaptive radar detection in partially homogeneous disturbance with persymmetric covariance," IEEE Signal Processing Letters, Vol. 23, No. 12, 1830-1834, 2016.
doi:10.1109/LSP.2016.2618619

8. Rangaswamy, M., P. Chen, J. H. Michels, and B. Himed, "A comparison of two non-homogeneity detection methods for space-time adaptive processing," Sensor Array and Multichannel Signal Processing Workshop Proceedings, 355-359, Rosslyn, VA, USA, Aug. 2002.

9. Tang, B., J. Tang, and Y. Peng, "Detection of heterogeneous samples based on loaded generalized inner product method," Digital Signal Process, Vol. 22, No. 4, 605-613, 2012.
doi:10.1016/j.dsp.2012.03.001

10. Shackelford, A. K., K. Gerlach, and S. D. Blunt, "Partially adaptive STAP using the FRACTA algorithm," IEEE Transactions on Aerospace and Electronic Systems, Vol. 45, No. 1, 58-69, 2009.
doi:10.1109/TAES.2009.4805263

11. Rabideau, D. J. and A. Steinhardt, "Improved adaptive clutter cancellation through data-adaptive training," IEEE Transactions on Aerospace and Electronic Systems, Vol. 35, No. 3, 879-891, 1999.
doi:10.1109/7.784058

12. Wu, Y. F., T. Wang, J. X. Wu, and J. Duan, "Training sample selection for space-time adaptive processing in heterogeneous environments," IEEE Geoscience and Remote Sensing Letters, Vol. 12, No. 4, 691-695, 2015.
doi:10.1109/LGRS.2014.2357804

13. Wu, Y. F., T. Wang, J. X. Wu, and J. Duan, "Robust training samples selection algorithm based on spectral similarity for space-time adaptive processing in heterogeneous interference environments," IET Radar, Sonar & Navigation, Vol. 9, No. 7, 778-782, 2015.
doi:10.1049/iet-rsn.2014.0285

14. Gao, Z. Q. and H. H. Tao, "Robust STAP algorithm based on knowledge-aided SR for airborne radar," IET Radar, Sonar & Navigation, Vol. 11, No. 2, 321-329, 2017.
doi:10.1049/iet-rsn.2016.0256

15. Sun, K., H. Zhang, G. Li, et al. "A novel STAP algorithm using sparse recovery technique," Proceedings of 2009 IEEE International Geoscience and Remote Sensing Symposium, 336-339, Cape Town, South Africa, Jul. 2009.

16. Herman, M. A. and T. Strohmer, "High-resolution radar via compressed sensing," IEEE Transactions on Signal Processing, Vol. 57, No. 6, 2275-2284, 2009.
doi:10.1109/TSP.2009.2014277

17. Han, S. D., C. F. Fan, and X. T. Huang, "A novel STAP based on spectrum-aided reduceddimension clutter sparse recovery," IEEE Geoscience & Remote Sensing Letters, Vol. 14, No. 2, 213-217, 2017.
doi:10.1109/LGRS.2016.2635104

18. Duan, K. Q., Z. T. Wang, W. C. Xie, et al. "Sparsity-based STAP algorithm with multiple measurement vectors via sparse Bayesian learning strategy for airborne radar," IET Signal Processing, Vol. 12, No. 5, 544-553, 2017.
doi:10.1049/iet-spr.2016.0183

19. Yang, Z. C., X. Li, H. Q. Wang, and W. D. Jiang, "On clutter sparsity analysis in space–time adaptive processing airborne radar," IEEE Geoscience and Remote Sensing Letters, Vol. 10, No. 5, 1214-1218, 2013.
doi:10.1109/LGRS.2012.2236639

20. Sen, S., "Low-rank matrix decomposition and spatio-temporal sparse recovery for STAP radar," IEEE Journal of Selected Topics in Signal Processing, Vol. 9, No. 8, 1510-1523, 2015.
doi:10.1109/JSTSP.2015.2464187

21. Ji, C. X., M. W. Shen, C. Liang, et al. "An efficient adaptive clutter compensation algorithm for bistatic airborne radar based on improved OMP application," Progress In Electromagnetics Research M, Vol. 59, 203-212, 2017.
doi:10.2528/PIERM17060801

22. Klemm, R., "Applications of space-time adaptive processing," IET Digital Library, 2004.

23. Wang, H. and L. J. Cai, "On adaptive spatial-temporal processing for airborne surveillance radar systems," IEEE Transactions on Aerospace and Electronic Systems, Vol. 30, No. 3, 660-670, 1994.
doi:10.1109/7.303737

24. Klemm, R., "Principles of space-time adaptive processing,", The Institution of Engineering and Technology, London, UK, 2002.

25. Shen, M. W., J. Wang, D. Wu, et al. "An efficient data domain STAP algorithm based on reduced dimension sparse reconstruction," Acta Electronica Sinica, Vol. 42, No. 11, 2286-2290, 2014.

26. Shen, M. W., J. Yu, D. Wu, et al. "An efficient adaptive angle-doppler compensation approach for non-sidelooking airborne radar STAP," Sensors, Vol. 15, No. 6, 13121-13131, 2015.
doi:10.3390/s150613121