Vol. 72
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2018-08-21
Design and Development of a Novel EBG Cell
By
Progress In Electromagnetics Research M, Vol. 72, 105-114, 2018
Abstract
In this paper, design and development of a novel electromagnetics band gap cell is presented. The EBG cell is designed aiming its use at relatively low frequencies. It is designed as a uni-planar structure to simplify the fabrication processes. It consists of multiple parallel combinations of L and C. These components are realized using planar microwave integrated circuit technology. The components L & C are designed as a meander-line inductor and inter-digital capacitors, respectively. The cell is perfectly symmetrical along x and y-axes to have uniform performance along two orthogonal directions. It is evaluated for its S-parameters and reflection phase. Simulated and measured results are presented for frequency range of 0.885 GHz to 3.1 GHz.
Citation
Sukh Das Ahirwar, Dasari Ramakrishna, and Vijay M. Pandharipande, "Design and Development of a Novel EBG Cell," Progress In Electromagnetics Research M, Vol. 72, 105-114, 2018.
doi:10.2528/PIERM18041805
References

1. Mahmoud, S. F., "A new miniaturized annular ring patch resonator partially loaded by a meta material ring with negative permeability and permittivity," IEEE Antennas and Wireless Propagation Letters, Vol. 3, No. 1, 19-22, 2004.
doi:10.1109/LAWP.2004.825092

2. Gonzalo, R., P. de Maagt, and M. Sorolla, "Enhanced patch-antenna performance by suppressing surface waves using photonic-bandgap substrates," IEEE Trans. Microw. Theory Tech., Vol. 47, No. 11, 2131-2138, Nov. 1999.
doi:10.1109/22.798009

3. Yang, F. and Y. Rahmat-Samii, Electromagnetic Band Gap Structures in Antenna Engineering, Cambridge University Press, 2009.

4. Yang, F. and Y. Rahmat-Samii, "Mutual coupling reduction of microstrip antennas using electromagnetic band-gap structure," Proc. IEEE AP-S Int. Symp. Dig., Vol. 2, 478-481, Jul. 2001.

5. Yang, F. and Y. Rahmat-Samii, "Microstrip antennas integrated with electromagnetic band-gap (EBG) structures: A low mutual coupling design for array applications," IEEE Trans. Antennas Propag., Vol. 51, No. 10, 2939-2949, Oct. 2003.

6. Alam, M. S., M. T. Islam, and N. Misran, "A novel compact split ring slotted electromagnetic band gap structure for micro strip patch antenna performance enhancement," Progress In Electromagnetic Research, Vol. 130, 389-409, 2012.
doi:10.2528/PIER12060702

7. Yang, F. and Y. Rahmat-Samii, "Reflection phase characterizations of the EBG ground plane for low profile wire antenna applications," IEEE Trans. Antennas Propag., Vol. 51, No. 10, 2691-2703, Oct. 2003.
doi:10.1109/TAP.2003.817559

8. Abedin, M. F., M. Z. Azad, and M. Ali, "Wideband smaller unit-cell planar EBG structures and their application," IEEE Trans. Antennas Propag., Vol. 56, No. 3, 903-908, Mar. 2008.
doi:10.1109/TAP.2008.917007

9. Xu, H.-J., Y.-H. Zhang, and Y. Fan, "Analysis of the connection section between K connector and microstrip with Electromagnetic Band gap (EBG) structure," Progress In Electromagnetics Research, Vol. 73, 239-247, 2007.
doi:10.2528/PIER07040801

10. Kim, M. and D. G. Kam, "Wideband and compact EBG structure with balanced slots," IEEE Transactions on Components, Packaging and Manufacturing Technology, Vol. 5, No. 6, 818-827, Jun. 2015.
doi:10.1109/TCPMT.2015.2436404

11. Karim, M. F., A. Q. Li, A. Yu, and A. Alphone, "Tunable filter using fractal Electromagnetic Band Gap (EBG) structures," Sensors and Actuators A, Vol. 133, No. 2, 355-362, 2007.
doi:10.1016/j.sna.2006.06.052

12. Gao, M.-J., L.-S. Wu, and J. F. Mao, "Compact notched ultra-wideband bandpass filter with improved out-of-band performance using quasi electromagnetic band gap structure," Progress In Electromagnetics Research, Vol. 125, 137-150, 2012.

13. Sievenpiper, D., L. Zhang, R. F. J. Broas, N. G. Alexopolus, and E. Yablonovitch, "High-impedance electromagnetic surfaces with a forbidden frequency band," IEEE Trans. Microw. Theory Tech., Vol. 47, No. 11, 2059-2074, 1999.
doi:10.1109/22.798001

14. Yang, F.-R., K.-P. Ma, Y. Qian, and T. Itoh, "A Uniplanar Compact Photonic Bandgap (UC-PBG) structure and its applications for microwave circuits," IEEE Trans. Microw. Theory Tech., Vol. 47, No. 8, 1509-1514, 1999.
doi:10.1109/22.780402

15. Lin, B.-Q., Q.-R. Zheng, and N.-C. Yuan, "A novel planar PBG structure for size reduction," IEEE Microwave and Wireless Components Letters, Vol. 16, No. 5, 269-271, May 2006.
doi:10.1109/LMWC.2006.873492

16. Yang, F. and Y. Rahmat-Samii, Electromagnetic Band Gap Structures in Antenna Engineering, ISBN-13 (e-book), Cambridge University Press, 2009.

17. Collin, R., Field Theory of Guided Waves, 2nd Ed., IEEE Press, New York, 1991.

18. Kovacs, P. and T. Urbanec, "Electromagnetic Band Gap structures: Practical tips and advice for antenna engineers," Radioengineering, Vol. 21, No. 1, Apr. 2012.

19. Brown, E. R., C. D. Parker, and E. Yablonovitch, "Radiation properties of a planar antenna on a photonic-crystal substrate," J. Opt. Soc. Am. B, Vol. 10, No. 2, 404-407, 1993.
doi:10.1364/JOSAB.10.000404

20. Simovski, C. R., P. Maagt, and I. V. Melchakova, "High impedance surfaces having resonance with respect to polarization and incident angle," IEEE Trans. Antennas Propag., Vol. 53, No. 3, 908-914, 2005.
doi:10.1109/TAP.2004.842598

21. Lin, B.-Q., Q.-R. Zheng, and N.-C. Yuan, "A novel planar PBG structure for size reduction," IEEE Microwave and Wireless Components Letters, Vol. 16, No. 5, 269-271, May 2006.
doi:10.1109/LMWC.2006.873492

22. Alam, M. S. and M. T. Islam, "Design of a wideband compact Electromagnetic Band Gap structure for lower frequency applications," Przeglad Elektrotechniczny, ISSN 0033-2097, R. 89 NR 4/2013.

23. Yang, F. and Y. Rahmat-Samii, "Reflection phase characterizations of the EBG ground plane for low profile wire antenna applications," IEEE Trans. Antennas Propag., Vol. 51, No. 10, 2691-2703, 2003.
doi:10.1109/TAP.2003.817559