Vol. 71
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2018-07-26
Determination of Power Line Transfer Functions by a Method of Impedance Transfer and Voltage Spread
By
Progress In Electromagnetics Research M, Vol. 71, 63-74, 2018
Abstract
A novel method to determine the transfer functions of power line networks is presented. Although a number of the evaluation methods have been proposed, the major drawbacks are on approximation, complexity and intuitiveness. The presented method overcomes those by making use of backward impedance transfer and forward voltage transfer techniques. Additionally, the novel method offers an extra feature that transfer functions at any points throughout the network can be simultaneously determined in one implementation. This paper first reviews some major existing methods. Then, the method of impedance and voltage transferring is derived and fulfilled with an implementation algorithm and mathematic description. Lastly, an implementation of the method on a sample network for the transfer function is demonstrated. Channel capacity is adopted as the measure for the quality of the channels.
Citation
Thanakorn Khongdeach, Wachira Chongburee, and Nattaka Homsup, "Determination of Power Line Transfer Functions by a Method of Impedance Transfer and Voltage Spread," Progress In Electromagnetics Research M, Vol. 71, 63-74, 2018.
doi:10.2528/PIERM18040201
References

1. Zimmermann, M. and K. Dostert, "A multi-path signal propagation model for the power line channel in the high frequency range," Proc. 3rd Power-Line Communications and Its Applications, 45-51, 1999.

2. Anatory, J., M. M. Kissaka, and N. H.Mvungi, "Channel model for broadband power line communication," IEEE Transactions on Power Deliverty, Vol. 22, No. 1, 135-141, Jan. 2007.
doi:10.1109/TPWRD.2006.881597

3. Anatory, J., N. Theethayi, and R. Thottappillil, "Power-line communication channel model for interconnected networks --- Part I: Two-conductor system," IEEE Transaction on Power Delivery, Vol. 24, No. 1, 118-123, Jan. 2009.
doi:10.1109/TPWRD.2008.2005679

4. Galli, S. and T. Banwell, "A novel approach to the modelling of the Indoor power line channel --- Part II: Transfer function and its properties," IEEE Transaction on Power Delivery, Vol. 20, No. 3, Jul. 2005.

5. Ravelo, B. and O. Maurice, "Kron-branin modeling of Y-Y-tree interconnects for the PCB signal integrity analysis," IEEE Transactions on Electromagnetic Compatibility, Vol. 59, No. 2, 411-419, Apr. 2017.
doi:10.1109/TEMC.2016.2610519

6. Ravelo, B., "Theory on asymmetrical coupled-parallel-line transmission and reflection zeros," Int. J. Circ. Theor. Appl., Vol. 45, No. 11, 1534-1551, Nov. 2017.
doi:10.1002/cta.2322

7. Ravelo, B., "Behavioral model of symmetrical multi-level T-tree interconnects," Progress In Electromagnetics Research B, Vol. 41, 23-50, 2012.
doi:10.2528/PIERB12040205

8. Berger, L. T. and G. Moreno-Rodriguez, "Power line communication channel modelling through concatenated IIR-filter elements," Journal of Communications, Vol. 4, No. 1, 41-51, Jan. 2009.
doi:10.4304/jcm.4.1.41-51

9. Li, B., D. Mansson, and G. Yang, "An efficient method for solving frequency responses of power-line networks," Progress In Electromagnetics Research B, Vol. 62, 303-317, 2015.
doi:10.2528/PIERB15013008

10. Khongdeach, T. and W. Chongburee, "A method to analyze communication bandwidth and pulse response of power lines with branches using backward impedance transform technique ," Proc. of the 10th ECTI-CON, 1-5, 2013.

11. Manitoba HVDC Research Centre [Online], Available: https://hvdc.ca/pscad/freeversion, Accessed on: May 1, 2018.

12. Anatory, J. and N. Theethayi, "Comparison of different channel modeling techniques used in the BPLC systems," World Academy of Science, Engineering and Technology International Journal of Electrical and Computer Engineering, Vol. 5, No. 8, 1034-1040, 2011.

13. Yonge, L., et al. "An overview of the HomePlug AV2 technology," Journal of Electrical and Computer Engineering, Vol. 2013, Article ID 892628, 20 pages, 2012, Internet: https://www.hindawi.com/journals/jece/2013/892628/, Mar. 10, 2018.

14. Esmailian, T., P. G. Gulak, and F. R. Kschischang, "A discrete multitone power line communications system," Proc. ICASSP, Vol. 5, 2953-2956, 2000.

15. Lazaropoulos, A. T., "New coupling schemes for distribution broadband over power line (BPL) networks," Progress In Electromagnetics Research B, Vol. 71, 39-54, 2016.
doi:10.2528/PIERB16081503