
Progress In Electromagnetics Research M, Vol. 71, 63–74, 2018

Determination of Power Line Transfer Functions by a Method
of Impedance Transfer and Voltage Spread

Thanakorn Khongdeach*, Wachira Chongburee, and Nattaka Homsup

Abstract—A novel method to determine the transfer functions of power line networks is presented.
Although a number of the evaluation methods have been proposed, the major drawbacks are on
approximation, complexity and intuitiveness. The presented method overcomes those by making use
of backward impedance transfer and forward voltage transfer techniques. Additionally, the method
offers an extra feature that transfer functions at any points throughout the network can be determined
in one implementation. This paper first reviews some major existing methods. Then, the method
of impedance and voltage transferring is derived and fulfilled with an implementation algorithm and
mathematic description. Lastly, an implementation of the method on a sample network for the transfer
function is demonstrated. Channel capacity is adopted as the measure for the quality of the channels.

1. INTRODUCTION

There are several choices of communication media with various advantages and disadvantages available
for certain applications and scenarios. When choosing the media, cost definitely comes into the
consideration. To preserve the cost, the existing power lines can be used as a communication media
without an investment on the infrastructure. However, it is always a tradeoff between cost and
performance. The power line network is optimized for power delivery purposes. Its performance as
a communication media is limited.

The characteristics of the components in the power line network are an obstacle for being a
good communication media. For example, impedance mismatches, which cause signal reflection,
are commonly found throughout the power line network. As a result, the power line cannot be
considered as a good communication media. Moreover, branchy power line networks are prone to
exhibit signal reflection. The communication on such a networks gets worsen, generally. Therefore, the
knowledge of network frequency responses is one of valuable measures of the power line performance as
a communication media.

The organization of this paper is as the follows. The existing methods to determine the frequency
responses of the power line network are briefly reviewed in the next section. In Section 3, the basic ideal
of the proposed method is discussed. An implementation procedure is also provided. Section 4 compares
the results from using the proposed method and from a commercial software. Section 5 presents a
method to describe the networks in a matrix form along with a closed form of the transfer functions.
An implementation of the proposed method on a sample network to obtain the transfer functions at
any destinations in the network is demonstrated. Finally, the conclusion is drawn in Section 6.

2. EXISTING METHODS

The existing methods used to determine the frequency response of power line communications might be
categorized into two approaches. The first approach is to trace the signal paths. This approach can be
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implemented either in the time domain or in the frequency domain, while the other approach models
the power line network by a cascade of functional blocks. This approach does not require signal path
tracing.

2.1. Signal Path Tracing Approach

In this approach, the power line network is driven by an impulse. Every time the impulse travels on
a power line and reaches a mismatched impedance joint, it generates two impulses. One goes through
the joint, and the other reflects back. The magnitudes of the through and the reflected impulses can
be determined from a reflection coefficient, which is calculated from the two mismatched impedances
at the joint. The resulting received impulse response h(t) at one specific destination is the sum of the
infinite number of the delayed impulses from all reflecting paths. Assuming N paths are dominating,
an approximation of the impulse response is given by [1]

h′(t) =
N∑

i=1

giA (f, di)δ(t − τi) (1)

where giA(f, di) is the resulting magnitude of the impulse of path i with a delay of τ . It can be obtained
by the multiplication all of the reflection coefficients, the transmission coefficients and the total ohmic
loss of the ith path. The desired approximated version of transfer function H ′(f) is simply the Fourier
transform of h′(t). For a simple network as in Fig. 1, some paths from the source to Destination 1 are
A → B → D,A → B → C → B → D,A → B → A → B → D and there are still many more paths. It
is not obvious to tell which paths are dominating. As a consequence, the difficult part of this approach
is on the tracing for the dominating paths.

D

Destination 2, ZL2

Zs

Destination 1, ZL1

C

BA

Source 

l2, Z02l1, Z01

l3, Z03

Figure 1. A simple network.

Another method in this class is found in [2, 3]. This method traces the signal traveling paths as
well but the tracing is implemented directly in the frequency domain. According to the method, a
frequency-dependent incident voltage v+ travels from the voltage source to the power line network.
When it reaches an interconnection of impedance-mismatched lines, the voltage partially reflects back
and partially transmits to the connected branches. The reflected voltage behaves as a newly generated
voltage source. A new voltage source keeps being induced every time the voltage hits a mismatched
interconnection. As a result, the number of induced sources goes to infinity. Nevertheless, the magnitude
of the newly generated source, on the other hand, decreases. The transfer function H(f) is then
computed from the ratio of the sum of the voltages that eventually come to the sink of interest VL(f),
and the incident voltage v+.

The complexity of this approach is about the same as the previous time domain approach since it
requires a similar path tracing. Hence the complexity exponentially increases when an extra branch or
interconnection is added to the network. The final result is only an approximated version of the transfer
function due to the finite number of paths invoked by the approach. Another major inflexibility is that
the transfer function is particularly for one destination. If a transfer function at another place on the
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power line network is needed, the signal reflection paths have to be completely rerouted. The next
method is less demanding on this issue.

2.2. Cascade Block Approach

The other class of existing techniques to find the transfer function parses the network into blocks. A
technique by [4] models the power line network by an overall 2 × 2 matrix called ABCD matrix. The
left end of this matrix is connected to a source voltage Vs with a source impedance Zs while the right
end is connected to the load ZL. The input-output relationship of the voltages and currents is given by[

Vin

Iin

]
=
[

A B
C D

] [
VL

IL

]
(2)

The transfer function defined by VL/Vs can be determined from the matrix elements by

H (f) =
VL

VS
=

ZL

AZL + B + CZSZL + DZS
(3)

The overall matrix is decomposed into sub-matrices in a cascade configuration as illustrated in
Fig. 2. For instance, the sub-matrix for a power line is given by[

A1 B1

C1 D1

]
=

⎡
⎣ cosh(γ1l1) Z01sinh(γ1l1)

sinh(γ1l1)
Z01

cosh(γ1l1)

⎤
⎦ (4)

where γ1 and l1 are the line propagation constant and power line length, respectively. On the other
hand, if the sub-matrix represents a branching line with an terminating impedance ZL2, the sub-matrix
becomes [

A2 B2

C2 D2

]
=

[ 1 0
CbZL2 + Db

AbZL2 + Bb
1

]
(5)

where Ab, Bb, Cb and Db are the elements of the branching line matrix. The multiplication of them
yields the overall matrix which is used to determine the transfer function as discussed earlier.
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Figure 2. ABCD matrix models.

In addition to the ABCD method, a cascade approach to determine the transfer function is
discussed in [5–7]. The approach models the printed circuit board (PCB) networks by a tree of L-
cells. Each cell represents a piece of transmission line strip on a PCB. The cell is formed by a series
impedance and a parallel admittance, which can be represented by a 2×2 transfer matrix T . The entire
network is viewed as a tree topology so it is a form of a single input multiple output (SIMO) network.
Each branch of the tree can be modeled by an L-cell as well. Combining the L-cells turns the SIMO
network into a cascade single input single output (SISO) network. This SIMO can be described by an
overall transfer 2× 2 matrix. The voltage transfer function is simply the reciprocal of the first entry for
the overall matrix.
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Another approach in this class [8] invokes a model of impulse invariant response (IIR) filters. The
idea behind this approach is that the signals on the power line network undergo infinite bounces, which
are like the responses of IIR filters. In this approach, parts in the power line networks are categorized
into modules such as lossless line, T-junction, star junction, serial and parallel impedances. Each
module is then described by a set of four transfer functions, Hf , Hb, H̃f and H̃b. These are derived
from four possible combinations of two ports and two entering/leaving directions of the signals. When
two modules are connected, the transfer functions are updated uniquely for each type of the modules.
Hence, the complexity rises exponentially when an additional module is added to the chain.

These methods are not quite flexible when it comes to determination of the multiple transfer
functions on the power line network. This is because the methods in this class require a chain of blocks
linking the source to a particular destination. Therefore, a new set of blocks must be created for each
particular destination in the power line network.

A remarkable method proposed in [9] aims to determine the frequency responses at multiple
destinations. The concept is that the complex network is divided into a number of single-junction
units. The key is on the update of the reflection coefficients. The method is powerful albeit rather
additively complicated. It is possible to implement a similar approach which is also based on the same
transmission line theory but simplicity and intuitiveness are relatively improved. An alternative method
called shrink and spread, which is simpler and more straitforward, is discussed in the next section.

3. SHRINK AND SPREAD METHOD

Recently, a method to find the transfer function named Backward Impedance Transfer (BIT) [10] that
overcomes the disadvantage of being particular on the destination was introduced. The method delivers
an exact version of the transfer function not just an approximated version. It is relatively simple, yet
computation friendly and dramatically intuitive. Essentially, it allows determination of multiple transfer
functions at any places on the power line network without re-routing for specific signal destinations.
This section discusses details and develops the method further to complete its usability.

3.1. The Basic Idea

The idea of BIT is that the entire power network is folded down or shrunk into a single impedance
connected right to the source called Zin. According to a basic microwave theory, a branch of length l
with a terminating load ZL can be collapsed into a transfer impedance Z ′ by the relationship

Z ′ = T {ZL, l} = Z0

[
ZL + Z0tanh(γl)
Z0 + ZLtanh(γl)

]
(6)

where γ and Z are the propagation constant and characteristic impedance of the transmission line,
respectively. Note that in this paper, the operator T{·} denotes a transfer operation of a terminating
impedance ZL over a power line of length l to a transfer impedance Z ′. To achieve Zin, the furthest
branch from the source is to collapse first. The folding down process is kept going towards the
source. When multiple branches are met at an interconnection, the transfer impedances of branches are
combined parallel. Eventually, the entire network will be replaced by one impedance called Zin.

Next, the initial voltage Vin across Zin is to be calculated by the voltage divider

Vin = Vs
Zin

Zin + Zs
(7)

where Zs is the internal source impedance. Once Vin on one end of a power line is known, the voltage
VL on the impedance ZL across a power line of length of l and a characteristic impedance of Zo is given
by

VL = Vin

(
1 + ΓL

eγl + ΓLe−γl

)
= Vin · F{ΓL, l} (8)

where γ is the propagation of the transmission line and ΓL is the reflection coefficient defined by

ΓL =
ZL − Z0

ZL + Z0
(9)
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The operator F{·} can be viewed as a voltage gain that forwards Vin along the power line to the load
ZL. The voltages are kept forwarded until reaching the terminating impedances in a spreading out
fashion. Eventually, the voltages all over the network are established and so are the associated transfer
functions. Note that a transfer function is just the ratio of the voltage on a designated load VL and the
source voltage Vs.

The next section generalizes this shrink-spread method for a network of N nodes with up to B
branches connected to each node. An algorithm to compute the transfer functions is discussed, and the
mathematic expressions for the shrinking and spreading processes are derived.

3.2. Physical Network Description

At a first glance, the network topology is assumed non-nested. It means that the voltage source is
connected to one main line, and the branches can only be tapped off from one of the interconnections
on the main line. They will be terminated by an impedance. There are no additional interconnections
on the branches. Nested networks will be discussed later. The network topology is depicted in Fig. 3.
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Figure 3. Network topology with terminating impedances at the end of the branches.

The network parameters can be described by a set of matrices conformed to the network topology
as the follows. Starting from the source side, the first interconnection between the source impedance
and the line is defined by Node 0. The interconnection toward the right are numbered by Node 1, Node
2 and so on until the last Node N . At Node n, there will be one main line running rightward to the
next node, Node (n + 1). It is referred to by Line(n, 1) where n represents the node number and 1
implies that it is the main line. Other regular branching lines that are tapped off from Node n are
named Line(n, b) where b = {2, 3, . . . , Bn}, and each is terminated by an impedance Zn,b.

Hence, the network topology can be described by an N × B matrix of length,

LLength =

⎡
⎢⎢⎣

l1,1 l2,1

l1,2 l2,2

. . . lN,1

. . . lN,2
...

...
l1,B l2,B

. . .
...

. . . lN,B

⎤
⎥⎥⎦ (10)

where element ln,b represents the length of Line(n, b), the bth branch tapped off from the nth Node.
The numbers of columns N and of rows B are equal to the total number of the interconnections (or the
nodes) and the largest number of branches connected to the nodes, respectively. As assigned earlier,
the 1st branch of Node n is always assigned to the main power line which draws from Node n to Node
(n + 1) on its right. At the last Node N , branch number 1 can be assigned to any branches since no
further nodes are on the right. It is noted that the matrix excludes the main line running from the
source at Node 0 to the entrance of the network at Node 1. The line is denoted exclusively by Line(0, 1)
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with a length of l0,1. When there are only Bn < B branches connected to Node n, the elements ln,b in
Eq. (10) for b > Bn are simply filled with 0.

The other necessary matrices to completely describe the line properties are (i) line capacitance per
unit length CPU , (ii) line inductance per unit length LPU , (iii) line resistance per unit length RPU , and
(iv) line conductance per unit length GPU . They can be indexed similarly to the ones used in the length
matrix LLength. These four matrices are used to derive the line characteristic impedance matrix, Z0,NB .
For a lossless network, matrices RPU and GPU can be neglected. It is noted that the characteristic
impedance Z0,0,1 of l0,1 is not a part of these matrices.

Lastly, the network description is completed by a branch terminating impedance matrix, ZNB .

ZNB =

⎡
⎢⎢⎣

TBD TBD
Z1,2 Z2,2

. . . ZN,1

. . . ZN,2
...

...
Z1,B Z2,B

. . .
...

. . . ZN,B

⎤
⎥⎥⎦ (11)

The indexing is the same as that previously assigned. Again, when the number of branches Bn is
less than B, the extra elements of matrix Zn,b, where b > Bn, are simply filled by ∞. It is noted that
the terminating impedances corresponding to the main line Zn,1 except ZN,1 are not yet known from
the physical components of the network. They will be determined backwardly as detailed in the next
section. Since the entries on the first row of the matrix in Eq. (11) except ZN,1 are not yet known, they
can be initialized by any values, for example, TBD (to be determined).

3.3. Implementation of Line Shrinking

According to BIT method, the goal of the shrinking procedure is to obtain an impedance that represents
the entire network. As illustrated in Fig. 4, the process starts by shrinking all branches to the main.
It means that the terminating impedances Zn,b are to be transferred over the line Line(n, b) to Node n
and become Z ′

n,b

Z ′
n,b = T {Zn,b, ln,b} = Z0,n,b

[
Zn,b + Z0,n,btanh(γl)n,b

Z0,n,b + Zn,btanh(γl)n,b

]
(12)

where Zo,n,b and Zn,b are the branching line characteristic impedance and the terminating impedance of
Line(n, b), respectively. The impedance transfer process is denoted by an operator T{·}. The parameter
γ in Eq. (12) is the propagation constant of the line Line(n, b). The resulting transferred impedances
Z ′

n,b will be kept in another B × N matrix named Z ′
NB . When all branches are transferred to Z ′

n,b, a
total number of Bn impedances are present at Node n.
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The entries on the first row of matrix Z ′
NB which are Z ′

n,1 for n = 1 to N − 1 cannot be calculated
promptly. Calculation for the entries Z ′

n,1 requires a special treat since the line Line(n, 1) is on the main
and is connected to the next node, (n+1) rather than an explicit physical impedance. To find Z ′

n,1, the
calculation starts from Node N − 1 on the far right first. For the second last Node N − 1, the ending
impedance ZN−1,1 of Line(N − 1, 1) is equal to the parallel combination of Z ′

N,1, Z ′
N,2 . . ., and Z ′

N,B .
For other nodes, the impedance Zn,1 is the terminating impedance viewed from Node n along the main
line (branch number 1). It is equivalent to the apparent impedance at Node (n + 1), Znode (n+1). The
impedance Znode (n+1) is equal to the parallel combination of all transferred impedances of the right
adjacent node (n + 1), Z ′

(n+1),b for b = {1, . . . , B}. As a result, Zn,1 can be written by

Zn,1 = P
(

⇀

Z
′
n+1

)
=

1
B∑

b=1

1
Z ′

n+1,b

(13)

where P(·) is the parallelizing operator and the column vector

⇀

Z
′
(n+1) =

⎡
⎢⎣

Z ′
(n+1),1

...
Z ′

(n+1),B

⎤
⎥⎦ (14)

is the collection of the transferred impedances associated with Node (n+1). Finally, the transfer of the
node impedance Zn,1 over the length ln,1 yields the entry Z ′

n,1 of the matrix Z ′
NB

Z ′
n,1 = T

{
P
(

⇀

Z ′
n+1

)
, ln,1

}
= T

{
Znode (n+1), ln,1

}
(15)

As depicted in Fig. 5, the shrinking process is implemented recursively from right to left until
Z ′

1,1 is updated. At this point, the matrix update is complete. Finally, the impedance of desire
Zin = Znode 0 = Z ′

0,1 is simply a transfer impedance of Znode 1 over the power line Line(0, 1) with
a length of l0,1

Zin = Z ′
0,1 = T

{
P
(

⇀

Z
′
1

)
, l0,1

}
(16)

The next process is to spread out the source voltage Vs to the terminating impedance, Zn,b.

3.4. Implementation of Voltage Spreading

The spreading process begins with the initial voltage at Node 0 calculated by

Vnode 0 = Vs

(
Znode 0

Znode 0 + Zs

)
(17)

The voltage Vn,b on a particular terminating load Zn,b can be achieved by two following steps. First,
the initial voltage Vnode 0 is forwarded along the main line until it reaches Node n. There the voltage
Vnode n is obtained. Second, the node voltage Vnode n is forwarded along the branch b for the designated
Vn,b.

The computation of Vn,b can be made more systematic by creating a matrix ΓNB of which the
entries corresponding to Node n and Branch b are given by

Γn,b =
Zn,b − Z0,n,b

Zn,b + Z0,n,b
(18)

where Z0,n,b and Zn,b are the entries of the characteristic impedance matrix Z0NB and terminating
impedance matrix ZNB , respectively. The entries of the matrix ΓNB are required to determine the
voltages across the power lines. Similarly, the voltages at the terminating load Vn,b can be stored in a
resulting matrix VNB using the same indexing.
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Since the voltage Vn,b is a forwarded version of Vnode n along the branch b, calculation of Vnode n is
the pathway. The node voltage Vnode (n) or Vn−1,1 is related to the previous node voltage by

Vnode n = V(n−1),1 = Vnode (n−1)F {Γn,1, ln,1} (19)

where F{·} is the operator that computes the forward voltage gain defined earlier in Eq. (8). Once the
Vnode n is known, the voltage on Zn,b is given by

Vn,b = Vnode nF {Γn,b, ln,b} (20)

Combining Eqs. (19) and (20), the voltage Vn,b can be written in a closed form by

Vn,b = Vnode 0

[
n∏

m=1

F {Γm,1, lm,1}
]
F {Γn,b, ln,b} (21)

Implementation of the voltage spreading is illustrated in Fig. 6.
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Figure 6. Voltage forwarding procedure.

By setting the source voltage flat over the frequency band of interest, Vs(f) = 1, the transfer
function at the terminating load Zn,b defined by Hn,b(f) = Vn,b(f)/Vs(f), is simply Vn,b(f). Since
Vn,b(f) on any terminating loads can be obtained at the same time, this shrinking-spreading method
delivers transfer functions all over the network, simultaneously.

4. RESULTS COMPARISON WITH COMMERCIAL SOFTWARE PACKAGE

In this section, the results from the proposed technique are compared with the results from PSCAD [11],
a commercial software package. Since the software package is intended for the power system analysis,
the transfer function determination is not handily provided. On the other hand, a rectangular pulse
response is a common feature of the software. Therefore, the pulse response will be used as a tool
to compare the results obtained from the proposed shrink-spread method and from the commercial
software.

The pulse response simulated by the shrink and spread method can be indirectly implemented by
the following approach. In time domain, the pulse response vL(t) at a destination can be determined
by a convolution of the source pulse vs(t) and the impulse response from the source to the destination,
hL(t). In frequency domain, the Fourier transform of the pulse response VL(f) can be achieved by

VL(f) = HL(f) · Vs(f) (22)

where HL(f) and Vs(f) are the Fourier transforms of hL(t) and vs(t), respectively. The shrink-spread
method determines HL(f) while the Fourier transform of a causal rectangular pulse vs(t) with an
amplitude of A, a pulse width of τ and a delay of T0 is given by

Vs(f) = τA·Sinc(fτ) · exp(−j2πf · T0/2) (23)
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Figure 8. Rectangular pulse response on N21 reported by PSCAD.

Then, the pulse response vL(t) is simply the inverse Fourier transform of the product of HL(f) and
Vs(f).

The sample network as shown in Fig. 7 is taken from [12], one of widely cited papers. The source
Vs generates a single rectangular pulse with an amplitude A of 2V, a width τ of 1µs and a delay of
1µs to drive the network. The resulting waveform observed at N21 by PSCAD is shown in Fig. 8.
Meanwhile, the shrink-spread method creates the waveform with a frequency resolution (step) of 1 kHz
and the frequency band spans from 0 to 100 MHz, and it is shown in Fig. 9. They are very close to the
results by ATP-EMTP, a commercial software reported in [12]. Therefore, the capability to determine
the transfer function of the proposed method is confirmed.

5. IMPLEMENTATION ON A SAMPLE NETWORK

In this section, the transfer functions throughout a sample home power line network are to be determined
by using the proposed shrink-spread method. The merits as communication media at all terminating
loads of the branches are measured by using the channel capacity. The topology of the sample network
consists of 4 nodes with up to 5 branches connected to them as depicted in Fig. 10.

The cable lengths and the impedances at the ends of the branches are listed in the matrices LLength

and ZNB, respectively. The terminating impedances on the first row of ZNB are associated with the
equivalent impedances at the interconnections (nodes). They are physically unavailable, so the entries
are initially filled with TBD. The characteristic impedances throughout the network are assigned to be
85 Ω, which is the result of a capacitance of 61.734 pF/m and an inductance of 0.44388 µH/m as used
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Figure 10. Network topology with terminating impedances and the line lengths.

in [12]. The band of interest and the power constraint follow the Homeplug standard, which allows a
power spectral density less than −50 dBm/Hz in the 2–30 MHz band [13]. The source impedance Zs is
assumed to be 50 Ω.

Signal power spectral densities (PSD) at the terminating impedances are determined from

Sn,b(f) = |Hn,b(f)|2 · Sss(f) (24)

where Sss(f) is the PSD of the source signal. Sss(f) is flat at a level of −47 dBm/Hz to ensure that the
maximum power density entering the network will not exceed −50 dBm/Hz. With −47 dBm/Hz, power
level limit can be reached only when the equivalent impedance of the network Zin matches to 50 Ω of
Zs.

The major types of the noises in typical power line networks are impulsive and background noise.
However, in this simulation, only the color background noise present at the load Zn,b is to be considered.
Although the impulsive noise dominates the channel performance, it is not taken into account. The
background noise PSD as given in [14] is described by

NPSD (f) = a + b · f c dBm/Hz (25)

where f is the frequency in MHz. The noise PSD is monotonously decreasing, and the asymptotic noise
floor in the higher frequency band is adBm/Hz. The values of a, b and c as given in the literature for
the worst case are −145, 53.23 and −0.337, respectively.
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Channel capacity is commonly used as a measure to evaluate the link merit. The discrete frequency
version of the channel capacity calculation at the terminating impedance Zn,b is given by [15]

Cn,b = Δf

M2∑
m=M1

[
log2

(
1 +

S(mΔf) |Hn,b(mΔf)|2
N(mΔf)

)]
(26)

In this simulation, the calculation of Cn,b covers a band ranging from M1 · Δf = 2 MHz to
M2 · Δf = 30 MHz.

The signal power spectral densities at the selected loads Z1,5, Z2,3, Z3,3 and Z4,1 are shown in
Fig. 11, and the effective channel capacities in Mbps at all loads are summarized in the matrix CNB .

CNB =

⎡
⎢⎢⎢⎣

554 490 397 375
722 655 601 382
596 515 451 508
597 − − 358
572 − − −

⎤
⎥⎥⎥⎦ (27)
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Figure 11. PSD of the signals at the selected loads and PSD of the background noise.

Note that Cn,1 for n = 1 to 3 on the first row of CNB do not physically exist. They are available in
the matrix because the equivalent transfer functions at the nodes exist. The calculation of the channel
capacities is then possible.

6. SUMMARY AND CONCLUSION

In this paper, a recently-proposed alternative method to determine the transfer functions on the power
line network is reviewed, analyzed and further developed. The method shrinks the entire network into
a single impedance then spreads out the voltage to all destination loads. Its major advantages over the
existing technique are simplicity and intuitiveness with an essential feature on the capability to monitor
the transfer functions throughout the network. The development delivers a recursive form for the
shrinking process and a production form for the spreading processes. Furthermore, this paper describes
the network in a matrix form which makes implementation of the method computation-friendly. Lastly,
a demonstration of using this method on a sample network is provided. The capability of this method
is thus confirmed. This method, therefore, is an alternative to evaluate the transfer functions with
noticeable advantages.

It is assumed that there are no sub-branches in the network topology. To deal with the case, the
proposed method needs some modification. The sub-branches, in fact, can be shrunk into one impedance
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by the same shrinking process. Then, the proposed method can be applied. This method does discard
all features other than the impedances and voltages. Those might be needed in some scenarios. Finally,
the major drawback of this method is that it still needs to evaluate the transfer function one frequency
at a time. The future research possible aims to reduce this burden.
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