1. Brown, W. C., "The history of power transmission by radio waves," IEEE Consumer Electronics Magazine, Vol. 32, 9, 1230-1242, 1984.
2. Khemar, A., A. Kacha, H. Takhedmit, and G. Abib, "Design and experiments of a dual-band rectenna for ambient RF energy harvesting in urban environments," IET Microwaves, Antennas & Propagation, Vol. 12, No. 1, 49-55, 2018.
doi:10.1049/iet-map.2016.1040
3. Lu, P., X.-S. Yang, and B.-Z. Wang, "A two-channel frequency reconfigurable rectenna for microwave power transmission and data communication," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 12, 2017.
doi:10.1109/TAP.2017.2766450
4. Lee, D.-J., S.-J. Lee, I.-J. Hwang, W.-S. Lee, and J.-W. Yu, "Hybrid power combining rectenna array for wide incident angle coverage in RF energy transfer," IEEE Transactions on Microwave Theory and Techniques, Vol. 65, No. 9, 2017.
5. Carvalho, N. B., A. Georgiadis, A. Costanzo, et al. "Critical review on smart clothing product development," IEEE Transactions on Microwave Theory and Techniques, Vol. 62, No. 4, 2014.
6. Hamani, A., B. Allard, T.-P. Vuong, et al. "Design of rectenna series-association circuits for radio frequency energy harvesting in CMOS FD-SOI 28 nm," IET Circuits, Devices & Systems, Vol. 12, No. 1, 40-49, 2018.
doi:10.1049/iet-cds.2017.0119
7. Chuma, E. L., L. de la T. Rodrguez, Y. Iano, L. L. Bravo Roger, and M. A. Sanchez-Soriano, "Compact rectenna based on a fractal geometry with a high conversion energy efficiency per area," IET Microwaves, Antennas & Propagation, Vol. 12, No. 2, 173-178, 2018.
doi:10.1049/iet-map.2016.1150
8. Ladan, S., N. Ghassemi, A. Ghiotto, and K. Wu, "Highly efficient compact rectenna for wireless energy harvesting application," IEEE Microwave Magazine, 117-122, 2013.
doi:10.1109/MMM.2012.2226629
9. Valenta, C. R. and G. D. Durgin, "Harvesting wireless power: survey of energy-harvester conversion efficiency in far-field wireless power transfer systems," IEEE Microwave Magazine, 108-120, 2014.
10. Olgun, U., C.-C. Chen, and J. L. Volakis, "Investigation of rectenna array configurations for enhanced RF power harvesting," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 262-265, 2011.
doi:10.1109/LAWP.2011.2136371
11. Hagerty, A., F. B. Helmbrecht, W. H. McCalpin, R. Zane, and Z. B. Popovic, "Recycling ambient microwave energy with broad-band rectenna arrays," IEEE Transactions on Microwave Theory and Techniques, Vol. 52, No. 3, 2004.
doi:10.1109/TMTT.2004.823585
12. Zbitou, J., M. Latrach, and S. Toutain, "Hybrid rectenna and monolithic integrated zero-bias microwave rectifier," IEEE Transactions on Microwave Theory and Techniques, Vol. 54, No. 1, 2006.
doi:10.1109/TMTT.2005.860509
13. Gianvittorio, J. P. and Y. Rahmat-Samii, "Fractal antennas: A novel antenna miniaturization technique, and applications," IEEE Antennas and Propagation Magazine, Vol. 44, 20-36, 2002.
doi:10.1109/74.997888
14. Falkenstein, E., M. Roberg, and Z. Popovic, "Low-power wireless power delivery," IEEE Transactions on Microwave Theory and Techniques, Vol. 60, No. 7, 2012.
doi:10.1109/TMTT.2012.2193594
15. Pozar, D. M., "Input impedance and mutual coupling of rectangular microstrip antennas," IEEE Transactions on Antennas and Propagation, Vol. 30, No. 6, 1982.
doi:10.1109/MAP.1982.27619