Vol. 76
Latest Volume
All Volumes
PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2018-05-14
A Novel Planar Wireless Power Transfer System with Distance-Insensitive Characteristics
By
Progress In Electromagnetics Research Letters, Vol. 76, 13-19, 2018
Abstract
Unlike conventional systems in which two identical resonant loops are employed, a pair of novel planar loops is developed for wireless power transfer. The proposed transmitting and receiving coils have different distances between turns while the wire length is the same. The effect of mutual inductance on transfer efficiency is analyzed. The mutual inductance of the proposed loops is more uniform than the conventional one, which is helpful for suppressing frequency splitting at closer transfer distance. Moreover, the power transfer performance is enhanced at longer distance. Additionally, an experimental prototype is fabricated to verify the distance insensitive characteristic of the proposed system.
Citation
Meng Wang, Jing Feng, Yue Fan, Minghui Shen, Jie Liang, and Yanyan Shi, "A Novel Planar Wireless Power Transfer System with Distance-Insensitive Characteristics," Progress In Electromagnetics Research Letters, Vol. 76, 13-19, 2018.
doi:10.2528/PIERL18032301
References

1. Poon, A. S. Y., "A general solution to wireless power transfer between two circular loop," Progress In Electromagnetics Research, Vol. 148, 171-182, 2014.
doi:10.2528/PIER14071201

2. Ye, Z. H., Y. Sun, X. Dai, C. S. Tang, Z. H. Wang, and Y. G. Su, "Energy efficiency analysis of U-coil wireless power transfer system," IEEE Trans. Power Electron., Vol. 31, 4809-4817, 2016.
doi:10.1109/TPEL.2015.2446501

3. Badawe, M. E. and O. M. Ramahi, "Efficient metasurface rectenna for electromagnetic wireless power transfer and energy harvesting," Progress In Electromagnetics Research, Vol. 161, 35-40, 2018.

4. Hui, S. Y. R., W. Zhong, and C. K. Lee, "A critical review of recent progress in mid-range wireless power transfer," IEEE Trans. Power Electron., Vol. 29, 4500-4511, 2014.
doi:10.1109/TPEL.2013.2249670

5. Chu, Y. C., N. S. Artan, D. Czarkowski, C. L. R. Chang, and J. Chao, "High-efficiency high-current drive power converter IC for wearable medical devices," IEICE Electron. Express, Vol. 12, 2015.
doi:10.1587/elex.12.20150953

6. Jang, B. J., S. Lee, and H. Yoon, "HF-band wireless power transfer system: Concept, issues, and design," Progress In Electromagnetics Research, Vol. 124, 211-231, 2012.
doi:10.2528/PIER11120511

7. Liu, F. X., Y. Yang, D. Jiang, X. Ruan, and X. Chen, "Modeling and optimization of magnetically coupled resonant wireless power transfer system with varying spatial scales," IEEE Trans. Power Electron., Vol. 32, 3240-3250, 2017.
doi:10.1109/TPEL.2016.2581840

8. Kim, J., W. S. Choi, and J. Jeong, "Loop switching technique for wireless power transfer using magnetic resonance coupling," Progress In Electromagnetics Research, Vol. 138, 197-209, 2013.
doi:10.2528/PIER13012118

9. Fan, Y., L. Li, S. Yu, C. Zhu, and C. H. Liang, "Experimental study of efficient wireless power transfer system integrating with highly sub-wavelength metamaterials," Progress In Electromagnetics Research, Vol. 141, 769-784, 2013.
doi:10.2528/PIER13061711

10. Lee, W. S., K. S. Oh, and J. W. Yu, "Distance-insensitive wireless power transfer and near-field communication using a current-controlled loop with a loaded capacitance," IEEE Trans. Antennas Propagat., Vol. 62, 936-940, 2014.
doi:10.1109/TAP.2013.2290549

11. Zhang, X. Y., C. D. Xue, and J. K. Lin, "Distance-insensitive wireless power transfer using mixed electric and magnetic coupling for frequency splitting suppression," IEEE Trans. Microw. Theory Tech., 1-10, 2017.

12. Niu, W., W. Gu, J. Chu, and A. Shen, "Frequency splitting patterns in wireless power relay transfer," Circuits Devices Syst. Lett., Vol. 8, 561-567, 2014.
doi:10.1049/iet-cds.2013.0440

13. Zhang, Y. M., Z. M. Zhao, and K. N. Chen, "Frequency-splitting analysis of four-Coil resonant wireless power transfer," IEEE Trans. Ind. Appl., Vol. 50, 2436-2445, 2014.
doi:10.1109/TIA.2013.2295007

14. Yeo, T. D., D. S. Kwon, S. T. Khang, and J. W. Yu, "Design of maximum efficiency tracking control scheme for closed-loop wireless power charging system employing series resonant tank," IEEE Trans. Power Electron., Vol. 32, 471-478, 2017.
doi:10.1109/TPEL.2016.2523121

15. Lee, K. and D. H. Cho, "Analysis of wireless power transfer for adjustable power distribution among multiple receivers," IEEE Antennas Wireless Propag. Lett., Vol. 14, 950-953, 2015.
doi:10.1109/LAWP.2015.2388711

16. Kim, J., D. H. Kim, and Y. J. Park, "Analysis of capacitive impedance matching networks for simultaneous wireless power transfer to multiple devices," IEEE Trans. Ind. Electron., Vol. 62, 2807-2813, 2015.
doi:10.1109/TIE.2014.2365751

17. Lyu, Y. L., F. Y. Meng, G. H. Yang, B. J. Che, and Q. Wu, "A method of using nonidentical resonant coils for frequency splitting elimination in wireless power transfer," IEEE Trans. Power Electron., Vol. 30, 6097-6107, 2015.
doi:10.1109/TPEL.2014.2387835

18. Lee, W. S., W. I. Son, K. S. Oh, and J. W. Yu, "Contactless energy transfer systems using antiparallel resonant loops," IEEE Trans. Ind. Electron., Vol. 60, 350-359, 2013.
doi:10.1109/TIE.2011.2177611