Vol. 67
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2018-04-17
Docker-Enabled Scalable Parallel MLFMA System for RCS Evaluation
By
Progress In Electromagnetics Research M, Vol. 67, 169-176, 2018
Abstract
Research on RCS evaluation for electrically large objects has been a hot topic for decades. Although multilevel fast multipole algorithm (MLFMA) has been the most popular method in scattering computation, due to the limitation of both CPU speed and memory size in a single computer, realistic large targets require discretization with millions of unknowns still cannot be solved by sequential implementations of MLFMA. In this paper, we introduce a Docker-enabled parallel MLFMA computing system based on MPI, which is proved to be friendly for deployment and economical for scalability, to solve electrically large scattering problems. In addition, the capability of the proposed system has been demonstrated by several canonical examples.
Citation
Jian Zhou, Shaowei Bie, Ling Miao, Yuhao Zhang, and Jianjun Jiang, "Docker-Enabled Scalable Parallel MLFMA System for RCS Evaluation," Progress In Electromagnetics Research M, Vol. 67, 169-176, 2018.
doi:10.2528/PIERM18021907
References

1. Valagiannopoulos, C. A. and N. L. Tsitsas, "Integral equation analysis of a low-profile receiving planar microstrip antenna with a cloaking superstrate," Radio Science, Vol. 51, No. 12, 2012.

2. Valagiannopoulos, C. A., "Semi-analytic solution to a cylindrical microstrip with inhomogeneous substrate," Electromagnetics, Vol. 27, No. 8, 527-544, 2007.
doi:10.1080/02726340701669524

3. Valagiannopoulos, C. A., "Arbitrary currents on circular cylinder with inhomogeneous cladding and RCS optimization," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 5, 665-680, 2007.
doi:10.1163/156939307780667337

4. Zhao, Y., X. W. Shi, and L. Xu, "Modeling with NURBS surfaces used for the calculation of RCS," Progress In Electromagnetics Research, Vol. 78, 49-59, 2008.
doi:10.2528/PIER07082903

5. Xu, L., J. Tian, and X. W. Shi, "A closed-form solution to analyze RCS of cavity with rectangular cross section," Progress In Electromagnetics Research, Vol. 79, 195-208, 2008.
doi:10.2528/PIER07090503

6. Li, X. F., Y. J. Xie, and R. Yang, "Bistatic RCS prediction for complex targets using modified current marching technique," Progress In Electromagnetics Research, Vol. 93, 13-28, 2009.
doi:10.2528/PIER09030804

7. Zhang, G. H., M. Xia, and X. M. Jiang, "Transient analysis of wire structures using time domain integral equation method with exact matrix elements," Progress In Electromagnetics Research, Vol. 92, 281-298, 2009.
doi:10.2528/PIER09032003

8. Valagiannopoulos, C. A., "An overview of the Watson transformation presented through a simple example," Progress In Electromagnetics Research, Vol. 75, 137-152, 2007.
doi:10.2528/PIER07052502

9. Song, J., C. C. Lu, and W. C. Chew, "Multilevel fast multipole algorithm for electromagnetic scattering by large complex objects," IEEE Transactions on Antennas & Propagation, Vol. 45, No. 10, 1488-1493, 2002.
doi:10.1109/8.633855

10. Velamparambil, S., W. C. Chew, and J. Song, "10 million unknowns: Is it that big?," IEEE Antennas & Propagation Magazine, Vol. 45, No. 2, 43-58, 2003.
doi:10.1109/MAP.2003.1203119

11. Velamparambil, S. and W. C. Chew, "Analysis and performance of a distributed memory multilevel fast multipole algorithm," IEEE Transactions on Antennas & Propagation, Vol. 53, No. 8, 2719-2727, 2005.
doi:10.1109/TAP.2005.851859

12. Fostier, J., B. Michiels, et al. "Solving billions of unknowns using the parallel MLFMA and a Tier 1 supercomputer," IEEE Radio Science Conference, 1, 2015.

13. Nguyen, N. and D. Bein, "Distributed MPI cluster with Docker swarm mode," IEEE Computing and Communication Workshop and Conference, 1-7, 2017.

14. Sterling, T., "BEOWULF: A parallel workstation for scientific computation," International Conference on Parallel Processing, 11-14, 1995.

15. Merkel, D., "Docker: Lightweight Linux containers for consistent development and deployment," Linux Journal, No. 2, 2014.

16. Pan, X. M. and X. Q. Sheng, "A highly efficient parallel approach of multi-level fast multipole algorithm," Acta Electronica Sinica, Vol. 20, No. 8, 1081-1092, 2007.

17. Takrimi, M., E. Özgür, and V. B. Ertürk, "A novel broadband multilevel fast multipole algorithm with incomplete-leaf tree structures for multiscale electromagnetic problems," IEEE Transactions on Antennas & Propagation, Vol. 64, No. 6, 2445-2456, 2016.
doi:10.1109/TAP.2016.2552545