
Progress In Electromagnetics Research M, Vol. 67, 169–176, 2018

Docker-Enabled Scalable Parallel MLFMA System
for RCS Evaluation

Jian Zhou, Shaowei Bie*, Ling Miao, Yuhao Zhang, and Jianjun Jiang

Abstract—Research on RCS evaluation for electrically large objects has been a hot topic for decades.
Although multilevel fast multipole algorithm (MLFMA) has been the most popular method in scattering
computation, due to the limitation of both CPU speed and memory size in a single computer, realistic
large targets require discretization with millions of unknowns still cannot be solved by sequential
implementations of MLFMA. In this paper, we introduce a Docker-enabled parallel MLFMA computing
system based on MPI, which is proved to be friendly for deployment and economical for scalability, to
solve electrically large scattering problems. In addition, the capability of the proposed system has been
demonstrated by several canonical examples.

1. INTRODUCTION

The solutions for electromagnetic scattering problems have been studied intensively in many scientific
researches, such as antenna and radar applications [1–3]. However, solving scattering problems of
electrically large objects, especially the RCS evaluation problems, is usually a time-consuming task.
Various computational electromagnetic techniques have been proposed to reduce the computational
complexity. The technology of electromagnetic modeling, NURBS, is widely used to represent complex
bodies for RCS calculation, and it requires very little memory and computing time but performs
difficultly in modeling [4]. High frequency asymptotic methods like GO and PO are widely used
to efficiently solve electrically large complex scattering problems at high frequency range, but they
are not wideband solutions [5, 6]. Arguably, the use of boundary integral equations with iterative
solvers is one of the most powerful and popular methods to solve electrically large scattering problems
[7, 8]. Obviously, MLFMA is the most successful one. A high performance parallel MLFMA has been
introduced by Chew and his group to successfully solve RCS problems up to ten million unknowns using
supercomputer in CEMS [9–11]. And billions of unknowns have been solved using the parallel MLFMA
and a Tier 1 supercomputer by Fostier et al. [12]. The traditional parallel MLFMA solutions often
rely on supercomputers, which are very large-scaled and well designed. Although their computational
ability is very powerful, these supercomputers can be very expensive, and it is not affordable for us.
With the steady development of the capability of the commodity computer, it becomes available to set
up a parallel cluster which can offer a large scale memory and computational ability. However, there is
still an obstacle, since building environment for every node can really require a significant investment
of time and effort, also require users to have additional technical knowledge. Nguyen and Bein have
used modern Docker technology to tackle this challenge, which brings great benefits to the development,
building and deployment [13]. In this paper, we propose a scalable parallel MLFMA computing system
supported by Docker on relatively inexpensive computing platforms to solve RCS problems of a couple
of representative objects, namely, NASA almond and electrically large conducting spheres.

Received 19 February 2018, Accepted 9 April 2018, Scheduled 17 April 2018
* Corresponding author: Shaowei Bie (bieshaowei@hust.edu.cn).
The authors are with the School of Optical and Electronic Information, Huazhong University of Science and Technology,
Wuhan 430074, China.

170 Zhou et al.

The rest content of the paper is organized as follows. In Section 2, we present the architecture of
the parallel MLFMA computing cluster supported by Docker containers. In Section 3, we summarize
the pseudo code of the parallel MLFMA implementations and relevant parallel strategy. Finally,
numerical accuracy analysis and parallel performance analysis are presented in Section 4 and Section 5,
respectively, followed by our concluding remarks in Section 6.

2. ARCHITECTURE OF THE PARALLEL MLFMA COMPUTING CLUSTER

A graphical representation of the architecture of the proposed parallel MLFMA computing system is
presented in Fig. 1. The overall schematic diagram can be divided into two parts, the parallel MLFMA
cluster and the Docker development, respectively. First of all, let’s take a look at the structure of the
parallel MLFMA cluster.

Parallel MLFMA Cluster within the LAN

Container

Image

Local Docker Instance

.. .
(1)run(2)commit

(3)save

Node_1 Node_2 Node_3 Node_8

User Station Git Server

User Laptop

(4)load

Cluster Docker Instance

End RCS Evaluation

Parallel MLFMA

Computing Based on MPI

 Set Simulation Parameters

Push New Branch

to Git Server

Pull Branch from Git Server

to All Computing Nodes

Send Result Files

to User Station

(1)

InfiniBand network for MPI Communication

common network for version control

RCS evaluation workflow

order tag for RCS evaluation workflow

order tag for Docker workf low

Docker workflow

Start RCS Evaluation

Figure 1. Architecture scheme of parallel MFLMA computing system, we use Docker technology for
development, building and deployment.

The Beowulf architecture has been adopted in our research, since the Beowulf research projects
have proved them to be able to provide high performance single user workstation at exceptional cost [14].
All simulations are performed on a so-called hybrid memory (shared memory for intra-communication,
distributed memory for inter-communication) cluster consisting of 8 commodity-grade computers each
containing one 4-core Intel i7-7700K processor (64 CPU cores in total), using 32 GB of RAM (or 4 GB
per core). All the computing nodes are connected using an InfiniBand network. Besides the computing
nodes, there is a master node (user station) in charge of task scheduling, and an auxiliary node (Git
server) in charge of version control. It is worth watching what Git server has done for us, since it will be
challenging for users to faultlessly and effectively synchronize source code to all computing nodes without
a set of version control tools. In our design’s originality, once the code is modified and committed as
new branch to Git server (or called code repository), the modifications will be automatically pushed to
all computing nodes.

The parallel simulation runtime environment is supported by Docker containers (a container is
an isolated environment where one or more processes can run). A container is instantiated from the
Docker image. An image contains all software dependencies needed to run an application, and it
even includes a Linux distribution [15]. The parallel MLFMA is implemented in Python/C++ and
some indispensable third party libraries, such as Python scientific computing toolkit and Blitz++,

Progress In Electromagnetics Research M, Vol. 67, 2018 171

and the inter-process communication is handled using the OpenMPI. It is quite challenging and time-
consuming if we deploy them into cluster by hand. Docker technology provides a cost-effective solution
to eliminate the procedures to reconfigure and rebuild applications for homogenous nodes, meanwhile
preserve comparable system performance. As shown in Fig. 1, we build the source code and dependency
packages once in the local Docker instance on the laptop, then the image encapsulated with runtime
environment can be deployed on any compatible Linux machine. We distribute the Docker image to all
computing nodes by Kubernates service, and what the computing nodes only need to do is to instantiate
a Docker container.

One obstacle for the adoption of Docker containers in MPI-based cluster is that Docker does not
support inter-node communication between different physical machines inherently. When the Docker
service is started, a virtual bridge called “docker0” will be created, and all container instantiated on
that physical machine can only communicate with local host through the docker0 which means that the
container on machine A cannot communicate with the container on machine B, as depicted in Fig. 2(a).
As depicted in Fig. 2(b), we propose an approach using Linux network tools to establish inter-node
communication: (1) set the docker0 down, and set a virtual bridge called “br0” up; (2) delete original
eth0 route (192.168.1.91/24 in our case), and add a new br0 route (192.168.1.191/24 in our case); (3)
add “−b = br0” parameter option to DOCKER OPTS (in Unix file “/etc/default/docker”); (4) start a
new Docker container service, and give it a virtual IP address using the pipework tool (192.168.1.11/24
in our case). Finally, the SSH service (MPI communicating protocol) is currently available for inter-node
communication.

container instance

docker0

172.17.0.1/16

172.17.42.1/16

192.168.1.91/24

LAN

eth0

veth*

eth0

container instance

docker0

172.17.0.1/16

172.17.42.1/16

192.168.1.92/24

LAN

eth0

veth*

eth0

machine A machine B
container instance

docker0

172.17.0.1/16

172.17.42.1/16

container instance

192.168.1.11/24

192.168.1.91/24 192.168.1.191/24

LAN LAN

eth0 eth0

veth*

eth0 eth0

br0

machine A machine A

MPI communication

fails between same IP

Now Docker internal network

shares the same IP address

segment as the global LAN

Figure 2. The transformation of Docker’s network topology for inter-communication between multiple
nodes.

3. PARALLEL IMPLEMENTS FOR MLFMA

The details of the parallel MLFMA code will not be discussed here, but we illustrate it in pseudo
code as a whole picture in Table 1. Briefly, the parallel MLFMA implementations can be divided into
four subroutines: (1) pre-processing; (2) constructing matrix equation; (3) solving matrix equation; (4)
post-processing. Part (1) and part (4) are implemented in sequential code, while part (2) and part (3)
are implemented in parallel code.

It is pivotal to program the subroutines of constructing matrix equation and solve matrix equation
in the implementations of parallel MLFMA. The impedance matrix Z in the MLFMA is classified into
a near-field interaction matrix and a far-field interaction matrix. Considering the near-field interaction
matrix, rows can be assigned to processors in such a way that all processors have approximately equal
numbers of near-field interactions due to their inherent sparsity. Before we detail how to set up the far-
field interaction matrix, the parallel approach for far-field interaction should be declared first. To
achieve good parallel efficiency, a transition level is introduced. The nonempty boxes are equally
distributed among processes at levels lower than this transition level, and the far-field patterns are
equally distributed among processes at levels higher than this transition level [10]. We choose level
dL/2e (L represents the number of total levels of the oct-tree) as the transition level. To evaluate
the far-field interaction in the MLFMA, the shift matrix and interpolation matrix are needed in the
aggregation stage to set up radiation patterns; the shift matrix and anterpolation matrix are needed in

172 Zhou et al.

Table 1. Pseudo code for parallel MLFMA.

Pre-processing {
Using GMSH to generate meshing file;
Reading coordinates of the center of every edge for MLFMA tree construction;
Constructing the distributed oct-tree using 64-bit Morton keys; }

Setting up matrix equation {
Setting up near-field interaction matrix;
Setting up far-field interaction matrix {

Setting up aggregation, translation and disaggregation matrix;
Setting up shifting and interpolation/anterpolation matrix; }}

Solving matrix equation {
Calculating matrix vector multiplication {

Calculating near-field interaction;
Calculating far-field interaction {

Performing aggregation;
Performing translation;
Performing disaggregation;}}}

Post-processing {
Calculating RCS; }

the disaggregation stage to set up receiving patterns; the translation matrix is needed in the translation
to translate the radiation patterns into receiving patterns.

Since the translation matrix used to be the main bottleneck of the memory requirement, it is vital
to reduce its store requirement. We adopt a method that distributes the translation matrix among
processes in higher levels and use a compressed representation for the translation matrix in lower
levels [16].

The calculation of the matrix equation in the MLFMA is divided into two parts, the calculation
of the near-field interaction and the calculation of the far-field interaction. The parallel calculation of

Level j on Node Q Level j+1 on Node P

Coarser Sampling Finer Sampling

Inflation Interpolation

& Shift

pi-1

pi

pi+1

pi+2

θ Sampling

ϕ Sampling

Level j on Node Q Level j+1 on Node P

Coarser SamplingFiner Sampling

Shift &

Anterpolation

pi-1

pi

pi+1

pi+2

θ Sampling

ϕ Sampling

(a) (b)

Figure 3. Parallel implementations during MLFMA stages, pi represents process i, (a) interpolation
during aggregation stage; (b) anterpolation during disaggregation stage.

Progress In Electromagnetics Research M, Vol. 67, 2018 173

the near-field interaction is straightforward since the workload of the near-field interaction is equally
distributed among processes. To perform the far-field interaction, both the radiation patterns and
receiving patterns are needed to be stored for each nonempty box. As depicted in Fig. 3, we implement
far-filed sampling not only along θ direction but also along ϕ direction for effective parallelism. One-
to-one communication is usually needed both for interpolation phase (in Fig. 3(a)) to set up radiation
patterns and anterpolation phase (in Fig. 3(b)) to set up receiving patterns.

4. NUMERICAL ACCURACY ANALYSIS

The parallel MLFMA code is verified by comparing the results with those calculated by FEKO for
conducting NASA Almond and by Mie scattering theory for conducting sphere. Flat triangular patches
and RWG basis functions are used to discretize the target objects and a Galerkin scheme to discretize the
surface integral formulations. The following numerical computation cases are set according to Table 2
for parallel MLFMA simulation settings.

Table 2. Parameters setting.

Integral Equation Combination Factor Iterative Solver Solver Tolerance
CFIE 0.5 Parallel BiCGSTab 1e-3

4.1. Numerical Results of 9.936 Inches NASA Almond

In Fig. 4, monostatic RCS values of the NASA almond whose length is 9.936 inches for both HH and
VV polarizations are plotted in dBsm at 9.92GHz as a function of the azimuthal angle ϕ. The almond
is originally modeled by GMSH using flat triangular patches whose mesh size lc = 0.1λ, leading to a
19650 unknown problem. The metallic NASA almond is shown in Fig. 5(a), it is on the x-y plane. Zero

(a) (b)

Figure 4. Monostatic RCS of the 9.936 inches NASA almond (planar triangular meshing model,
discretized with 19650 unknowns) at 9.92 GHz as a function of ϕ in the horizontal plane, (a) HH
polarization; (b) VV polarization.

174 Zhou et al.

(a) (b) (c)

Figure 5. Meshing distribution around the tip of NASA almond, (a) 3D model of NASA almond; (b)
GMSH meshing; (c) FEKO meshing.

degree (ϕ = 0) corresponds to normal incidence to the tip, and we measure it with its broad side flat.
As depicted in Fig. 4, the RCS calculated using the parallel MLFMA agrees well with that using FEKO
for both HH and VV polarizations except for the angle range approximately between 0◦ and 20◦.

Since the discretization of surface around the tip region in FEKO (as shown in Fig. 5(c)) is quite
different from that in GMSH (as shown in Fig. 5(b)), actually, meshing distribution in FEKO around
the tip is denser than GMSH. We consider it as a reasonable explanation for the numerical difference
between 0◦ and 20◦.

4.2. Numerical Results of Electrically Large Conducting Sphere

To verify the accuracy for electrically large problems, the solution for a conducting sphere of radius
a = 50λ is considered. The sphere is also modeled by GMSH using flat triangular patches whose mesh
size lc = 0.1λ, leading to 12466833 unknowns. The sphere is illuminated by a plane wave propagating
in the −x direction with the electric field polarized in the y direction. Fig. 6 presents the bistatic RCS
on the x-y plane as a function of the bistatic angle ϕ from 0◦ to 180◦, where 0◦ and 180◦ correspond to
the back-scattering and forward-scattering directions, respectively. As depicted in Fig. 6, the numerical
results are in good agreement with the analytical ones obtained by the Mie theory solution.

0°

Figure 6. Bistatic RCS of a conducting sphere with a radius of 50λ (discretized with 12466833
unknowns). 0◦ and 180◦ correspond to the back-scattering and forward-scattering direction, respectively.

Progress In Electromagnetics Research M, Vol. 67, 2018 175

5. PARALLEL PERFORMANCE ANALYSIS

The accuracy of the computed results have been compared with the dataset offered by FEKO and with
analytical results. In this section, we present numerical results demonstrating the parallel performance of
the designed algorithm. A set of results are presented from a scattering problem involving a conducting
sphere of radius a = 40λ discretized with 8018784 unknowns. Let T1 be the time for parallel MLFMA
solution on a single processes, and let Tp be the time on p processes, then, the parallel speedup is
defined as T1/Tp. We consider the CPU times as a function of the number of processes in Fig. 7 and
also plot the speedup as a function of the number of processes in the same figure. As depicted in Fig. 7,
the complete MLFMA solution performs best at aspecific number of parallel processes, according to
our coarse-grained settings, and 48 processes outperform the others. However, further increase in the
processes deteriorates the performance. The reason for this phenomenon is that when we increase the
number of processes, the communication data are possibly also increased, resulting in more time for
communication, and total solution time cost may not decrease. Communication cost has been the
bottleneck of parallel MLFMA. Furthermore, memory requirement for the translation matrix has been
the bottleneck of communication as it is duplicated in every process [10]. We recommend to apply more
well-designed parallel strategies to improve the process utilization [17].

Figure 7. CPU times with respect to number of processes for bistatic RCS computing of a conducting
sphere with a radius of 40λ (discretized with 8018784 unknowns). T1 is the used time for parallel
MLFMA solution on a single process, and Tp is the used time on p processes.

6. CONCLUSION

The paper presents a brief summary of a scalable parallel MLFMA computing system and the code
that we have developed for RCS evaluation on relatively inexpensive computing platforms with hybrid
memory architecture. Representative results have demonstrated the accuracy and efficiency of parallel
MLFMA. There is still some room for improvement in future work to achieve higher parallel scalability.

ACKNOWLEDGMENT

The authors are grateful for technical support from Dr. Idesbald Van den Bosch, European Patent
Office.

176 Zhou et al.

REFERENCES

1. Valagiannopoulos, C. A. and N. L. Tsitsas, “Integral equation analysis of a low-profile receiving
planar microstrip antenna with a cloaking superstrate,” Radio Science, Vol. 51, No. 12, 2012.

2. Valagiannopoulos, C. A., “Semi-analytic solution to a cylindrical microstrip with inhomogeneous
substrate,” Electromagnetics, Vol. 27, No. 8, 527–544, 2007.

3. Valagiannopoulos, C. A., “Arbitrary currents on circular cylinder with inhomogeneous cladding and
RCS optimization,” Journal of Electromagnetic Waves and Applications, Vol. 21, No. 5, 665–680,
2007.

4. Zhao, Y., X. W. Shi, and L. Xu, “Modeling with NURBS surfaces used for the calculation of RCS,”
Progress In Electromagnetics Research, Vol. 78, 49–59, 2008.

5. Xu, L., J. Tian, and X. W. Shi, “A closed-form solution to analyze RCS of cavity with rectangular
cross section,” Progress In Electromagnetics Research, Vol. 79, 195–208, 2008.

6. Li, X. F., Y. J. Xie, and R. Yang, “Bistatic RCS prediction for complex targets using modified
current marching technique,” Progress In Electromagnetics Research, Vol. 93, 13–28, 2009.

7. Zhang, G. H., M. Xia, and X. M. Jiang, “Transient analysis of wire structures using time domain
integral equation method with exact matrix elements,” Progress In Electromagnetics Research,
Vol. 92, 281–298, 2009.

8. Valagiannopoulos, C. A., “An overview of the Watson transformation presented through a simple
example,” Progress In Electromagnetics Research, Vol. 75, 137–152, 2007.

9. Song, J., C. C. Lu, and W. C. Chew, “Multilevel fast multipole algorithm for electromagnetic
scattering by large complex objects,” IEEE Transactions on Antennas & Propagation, Vol. 45,
No. 10, 1488–1493, 2002.

10. Velamparambil, S., W. C. Chew, and J. Song, “10 million unknowns: Is it that big?,” IEEE
Antennas & Propagation Magazine, Vol. 45, No. 2, 43–58, 2003.

11. Velamparambil, S. and W. C. Chew, “Analysis and performance of a distributed memory multilevel
fast multipole algorithm,” IEEE Transactions on Antennas & Propagation, Vol. 53, No. 8, 2719–
2727, 2005.

12. Fostier, J., B. Michiels, et al., “Solving billions of unknowns using the parallel MLFMA and a Tier
1 supercomputer,” IEEE Radio Science Conference, 1–1, 2015.

13. Nguyen, N. and D. Bein, “Distributed MPI cluster with Docker swarm mode,” IEEE Computing
and Communication Workshop and Conference, 1–7, 2017.

14. Sterling, T., “BEOWULF: A parallel workstation for scientific computation,” International
Conference on Parallel Processing, 11–14, 1995.

15. Merkel, D., “Docker: Lightweight Linux containers for consistent development and deployment,”
Linux Journal, No. 2, 2014.

16. Pan, X. M. and X. Q. Sheng, “A highly efficient parallel approach of multi-level fast multipole
algorithm,” Acta Electronica Sinica, Vol. 20, No. 8, 1081–1092, 2007.

17. Takrimi, M., E. Özgür, and V. B. Ertürk, “A novel broadband multilevel fast multipole algorithm
with incomplete-leaf tree structures for multiscale electromagnetic problems,” IEEE Transactions
on Antennas & Propagation, Vol. 64, No. 6, 2445–2456, 2016.

