Vol. 76
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2018-06-05
Design of Ultra-Narrowband Miniaturized High Temperature Superconducting Bandpass Filter
By
Progress In Electromagnetics Research Letters, Vol. 76, 105-111, 2018
Abstract
This paper proposes a novel clip-shaped meander-line resonator (CSMLR) to realize miniaturized ultra-narrowband (UNB) bandpass filter design. The main advantage is that it can achieve very weak coupling between adjacent resonators with keeping them very close and introduce transmission zeros (TZs). To further demonstrate the feasibility of using this configuration, a six-pole UNB filter with a fractional bandwidth (FWB) of 0.20% at the center frequency of 1915 MHz was designed on double-sided YBCO high temperature superconducting (HTS) thin films with a thickness of 0.5 mm and dielectric constant of 9.8 by using CSMLR. The measured responses agree rather well with the simulated ones. The measured results show a maximum insertion loss of 0.31 dB and return loss of 15.5 dB in the passband. Two transmission zeroes (TZs) are generated to improve the passband selectivity, which causes the band-edge steepness better than 50 dB/MHz in both transition bands.
Citation
Liguo Zhou, Zhihe Long, Hui Li, Hang Wu, Tianliang Zhang, and Man Qiao, "Design of Ultra-Narrowband Miniaturized High Temperature Superconducting Bandpass Filter," Progress In Electromagnetics Research Letters, Vol. 76, 105-111, 2018.
doi:10.2528/PIERL18021004
References

1. He, Y., G. Wang, and L. Sun, "Direct matrix synthesis approach for narrowband mixed topology filters ," IEEE Microwave and Wireless Components Letters, Vol. 26, No. 5, 301-303, 2016.
doi:10.1109/LMWC.2016.2549098

2. Zhou, J. F., M. J. Lancaster, F. Huang, R. Neil, and G. Dave, "HTS narrow band filters at UHF band for radio astronomy applications," IEEE Transactions on Applied Superconductivity, Vol. 15, No. 2, 1004-1007, 2005.
doi:10.1109/TASC.2005.850170

3. Liu, H. W., F. Liu, F. Qin, B. P. Ren, P. Wen, and X. H. Guan, "Compact dual-band HTS bandpass filter using spirally asymmetric stepped-impedance resonators," IEEE Transactions on Applied Superconductivity, Vol. 26, No. 7, 1-5, 2016.

4. Gao, T. Q., B. Wei, B. S. Cao, D. Wang, and X. B. Guo, "A low loss superconducting filter with four states based on symmetrical interdigital-loaded structure," Physica C: Superconductivity and Its Applications, 48-51, 2016.
doi:10.1016/j.physc.2016.03.008

5. Sekiya, N., "Design of high-order HTS dual-band bandpass filters with receiver subsystem for future mobile communication systems," Physica C: Superconductivity and Its Applications, 91-97, 2016.
doi:10.1016/j.physc.2016.06.008

6. Wang, X., B. Wei, T. N. Zheng, B. S. Cao, L. N. Jiang, and J. B. Chen, "Design and implementation of a narrow-band superconducting X-band diplexer with high isolation," Physica C: Superconductivity and Its Applications, 9-13, 2016.
doi:10.1016/j.physc.2016.09.005

7. Liu, H. W., B. P. Ren, S. X. Hu, X. H. Guan, P. Wen, and J. M. Tang, "High-order dual-band superconducting bandpass filter with controllable bandwidths and multitransmission zeros," IEEE Transactions on Microwave Theory and Techniques, Vol. 65, No. 10, 3813-3823, 2017.
doi:10.1109/TMTT.2017.2690295

8. Li, C. G., T. Yu, Y. B. Bian, Y. Wu, J. Wang, X. Q. Zhang, L. Sun, H. Li, and Y. S. He, "An ultra-narrowband high-temperature superconducting bandpass filter with a fractional bandwidth of 0.02%," IEEE Transactions on Applied Superconductivity, Vol. 26, No. 7, 1-4, 2016.

9. Dustakar, K. and S. Berkowitz, "An ultra-narrowband HTS bandpass filter," IEEE MTT-S International Microwave Symposium digest, 1881-1884, 2003.

10. Hejazi, Z. M., M. C. Scardelletti, F. W. Van Keuls, A. A. Omar, and A. Al-Zayed, "EM full-wave analysis and testing of novel quasi-elliptic microstrip filters for ultra narrowband filter design," Progress In Electromagnetics Research, Vol. 85, 261-288, 2008.
doi:10.2528/PIER08082605

11. Zhang, D., G. C. Liang, C. F. Shih, M. E. Johansson, and R. S. Withers, "Narrowband lumpedelement microstrip filters using capacitively-loaded inductors," IEEE Transactions on Microwave Theory and Techniques, 3030-3036, 1995.
doi:10.1109/22.475670

12. Hong, J. S., E. P. Mcerlean, and B. Karyamapudi, "Narrowband high temperature superconducting filter for mobile communication systems," IEE Proceedings --- Microwaves, Antennas and Propagation, 491-496, 2005.

13. Hong, J. S., E. P. Mcerlean, and B. Karyamapudi, "High-order superconducting filter with group delay equalization," IEEE MTT-S International Microwave Symposium Digest, 1467-1470, 2005.

14. Chu, Q. X. and H. Wang, "A compact open-loop filter with mixed electric and magnetic coupling," IEEE Transactions on Microwave Theory & Techniques, 431-439, 2008.
doi:10.1109/TMTT.2007.914642