Vol. 65
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2018-03-13
Analysis of a Non-Integer Dimensional Tunnel and Perfect Electric Conductor Waveguide
By
Progress In Electromagnetics Research M, Vol. 65, 165-174, 2018
Abstract
Solutions to the Maxwell equations for a planar non-integer dimensional perfect electric conductor (NID-PEC) waveguide are obtained. The space within the guide is NID in direction normal to walls of the waveguide. Field behaviour within the waveguide is noted for different values of the parameter, D, describing dimension of the NID space. For D = 2, classical results are recorded. The discussion is further extended by treating propagation in a tunnel within unbounded dielectric medium. The space within tunnel is also NID in direction perpendicular to walls of the tunnel. For different values of D field behaviors are also presented. It has been noted that for D = 2 and taking very high values of permittivity (ϵ → ∝) classical results for PEC waveguide are recorded. Whereas for ϵ → ∝, field behavior within tunnel matches with NID-PEC waveguide.
Citation
Nayab Bhatti, and Qaisar Naqvi, "Analysis of a Non-Integer Dimensional Tunnel and Perfect Electric Conductor Waveguide," Progress In Electromagnetics Research M, Vol. 65, 165-174, 2018.
doi:10.2528/PIERM18011604
References

1. Mandelbrot, B. B. and J. W. V. Ness, "Fractional brownian motions, fractional noises and applications,", Vol. 10, No. 4, 422-437, 1968.
doi:10.1007/3-540-26536-8_2

2. Dimri, V. P. and R. P. Srivastava, Fractal Behaviour of the Earth System, 23-37, Springer Berlin Heidelberg, 2005.
doi:10.1016/j.physleta.2005.01.024

3. Tarasov, V. E., "Continuous medium model for fractal media," Physics Letters A, Vol. 336, 167-174, 2005.
doi:10.1063/1.523395

4. Stillinger, F. H., "Axiomatic basis for spaces with non-integer dimensions," Journal of Mathematical Physics, Vol. 18, 1224-1234, 1977.
doi:10.1088/0305-4470/37/27/009

5. Palmer, C. and P. N. Stavrinou, "Equations of motion in a non-integer-dimensional space," Journal of Physics A, Vol. 37, 6987-7003, 2004.
doi:10.1007/978-3-642-25358-4

6. Zubair, M., M. J. Mughal, and Q. A. Naqvi, Electromagnetic Fields and Waves in Fractional Dimensional Space, Springer-Verlag, 2012.
doi:10.1103/PhysRevA.11.42

7. Herrick, D. R. and F. H. Stillinger, "Variable dimensionality in atoms and its effects on the ground state of the helium isoelastic sequence," Physical Review A, Vol. 11, 42-53, 1975.
doi:10.1063/1.446210

8. Pfeifer, P. and D. Avnir, "Chemistry in non-integer dimensions between two and three. I. Fractal theory of heterogeneous surfaces," Journal of Chemical Physics, Vol. 79, 3558-3565, 1983.

9. Muslih, S. I., M. Saddallah, D. Baleanu, and E. Rabei, "Lagrangian formulation of Maxwell’s field in fractional D dimensional space-time," Romanian Journal of Physics, Vol. 55, 659-663, 2010.

10. Muslih, S. I., M. Saddallah, D. Baleanu, and E. Rabei, "Lagrangian formulation of Maxwell’s field in fractional D dimensional space-time," Romanian Reports of Physics, Vol. 55, 659-663, 2010.
doi:10.2528/PIERL10102103

11. Zubair, M., M. J. Mughal, and Q. A. Naqvi, "The wave equation and general plane wave solutions in fractional space," Progress In Electromagnetics Research Letters, Vol. 19, 137-146, 2010.
doi:10.2528/PIER11021508

12. Zubair, M., M. J. Mughal, and Q. A. Naqvi, "An exact solution of the cylindrical wave equation for electromagnetic field in fractional dimensional space," Progress In Electromagnetics Research, Vol. 114, 443-455, 2011.

13. Zubair, M., M. J. Mughal, and Q. A. Naqvi, "An exact solution of the spherical wave equation in D-dimensional fractional space," Journal of Electromagnetics Waves and Applications, Vol. 25, No. 10, 1481-1491, 2011.
doi:10.1016/j.ijleo.2015.12.019

14. Naqvi, Q. A. and M. Zubair, "On cylindrical model of electrostatic potential in fractional dimensional space," Optik-International Journal for Light and Electron Optics, Vol. 127, 3243-3247, 2016.
doi:10.1080/09205071.2015.1032436

15. Noor, A., A. A. Syed, and Q. A. Naqvi, "Quasi-static analysis of scattering from a layered plasmonic sphere in fractional space," Journal of Electromagnetic Wave and Applications, Vol. 29, No. 8, 1047-1059, 2015.
doi:10.1016/j.ijleo.2017.04.081

16. Munawar, Y., M. A. Ashraf, Q. A. Naqvi, and M. A. Fiaz, "Two dimensional green’s function for planar grounded dielectric layer in non-integer dimensional space," Optik-International Journal for Light and Electron Optics, Vol. 140, 610-618, 2017.
doi:10.1080/09205071.2016.1276859

17. Abbas, M., A. A. Rizvi, M. A. Fiaz, and Q. A. Naqvi, "Scattering of electromagnetic plane wave from a low contrast circular cylinder buried in non-integer dimensional half space," Journal of Electromagnetic Waves and Applications, Vol. 31, No. 3, 263-283, 2017.
doi:10.1016/j.ijleo.2017.05.043

18. Naqvi, Q. A., "Scattering from a cylindrical obstacle buried in non-integer dimensional dielectric half space using kobayashi potential method," Optik-International Journal for Light and Electron Optics, Vol. 141, 39-49, 2017.
doi:10.1007/s10582-006-0093-7

19. Sadallah, M., S. I. Muslih, and D. Baleanu, "Equations of motion for Einstein’s field in non-integer dimensional space," Czechoslovak Journal of Physics, Vol. 56, 323-328, 2006.
doi:10.1080/09205071.2013.840543

20. Khan, S. and M. J. Mughal, "General solution for TEM, TE, and TM waves in fractional dimensional space and its application in rectangular waveguide filled with fractional space," Journal of Electromagnetic Waves and Applications, Vol. 27, No. 18, 2298-2307, 2013.
doi:10.1016/j.physleta.2015.06.032

21. Tarasov, V. E., "Fractal electromagnetics via non-integer dimensional space approach," Physics Letters A, Vol. 379, 2055-2061, 2015.
doi:10.1016/j.cnsns.2014.05.025

22. Tarasov, V. E., "Vector calculus in non-integer dimensional space and its applications to fractal media," Journal of Communications in Nonlinear Science and Numerical Simulation, Vol. 21, No. 2, 360-374, 2015.
doi:10.1063/1.4892155

23. Tarasov, V. E., "Anisotropic fields media by vector calculus in non-integer dimensional space," Journal of Mathematical Physics, Vol. 55, 083510, 2014.
doi:10.1080/09205071.2017.1358108

24. Naqvi, Q. A. and M. A. Fiaz, "Electromagnetic behavior of a planar interface of non-integer dimensional spaces," Journal of Electormagnetic Waves and Applications, Vol. 31, No. 16, 1625-1637, 2017.

25. Abramowitz, M. and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, U.S. Department of Commerce, 1972.
doi:10.1016/j.physleta.2013.01.030

26. Balankin, A. S., B. Mena, J. Patino, and D. Morales, "Electromagnetic fields in fractional continua," Physics Letter A, Vol. 377, 783-788, 2013.
doi:10.2528/PIERM12121903

27. Omar, M. and M. J. Mughal, "Behavior of electromagnetic waves at dielectric fractal-fractal interface in fractional spaces," Progress in Electromagnetic Research M, Vol. 28, 229-244, 2013.