Vol. 80
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2018-04-18
Design Approach of Multibeam Using Phased Array Antenna Aided with Butler Matrix for a Fixed Coverage Area
By
Progress In Electromagnetics Research B, Vol. 80, 133-149, 2018
Abstract
This paper devises a framework of phased array antennas to radiate multiple beams for a fixed coverage. The phased antenna array is chosen so that the beamforming can be fixed in selected coverage area. The antenna arrays are employed with a Butler matrix (BM) to form required phases of excitation coefficients to the radiating elements. Optimally designed 4×4 or 8×8 Butler matrix is utilized at the I/O ports of the phased antenna array. The grating lobes are reduced by using the principle of orthogonality to the feeds of subarray (group of column arrays of phased array). This article also exploits the concept of skirt elements to reach the desired coverage area while reducing the beam overlapping in the restricted area. Simulation studies highlight the proposed claims with elaborated numerical analysis of different case studies.
Citation
Tumma Divya Vani, and Konidala Ratna Subhashini, "Design Approach of Multibeam Using Phased Array Antenna Aided with Butler Matrix for a Fixed Coverage Area," Progress In Electromagnetics Research B, Vol. 80, 133-149, 2018.
doi:10.2528/PIERB18011012
References

1. Schulwitz, L. and A. Mortazawi, "A compact dual-polarized multibeam phased-array architecture for millimeter-wave radar," IEEE Trans. Microw. Theory Techn., Vol. 53, No. 11, 3588-3594, Nov. 2005.
doi:10.1109/TMTT.2005.857104

2. Jacomb-Hood, A. and E. Lier, "Multibeam active phased arrays for communications satellites," IEEE Microw. Mag., Vol. 1, No. 4, 40-47, Dec. 2000.
doi:10.1109/6668.893245

3. Wang, J., Y. Fang, and D.-P.Wu, "Enhancing the performance of medium access control for WLANs with multi-beam access point," IEEE Trans. Wireless Commun., Vol. 6, No. 2, 556-565, Feb. 2007.
doi:10.1109/TWC.2007.05245

4. Chou, Z.-T., C.-Q. Huang, and J. M. Chang, "OoS provisioning for wireless LANs with multi-beam access point," IEEE Trans. Mobile Comput., Vol. 13, No. 9, 2113-2127, Sep. 2014.
doi:10.1109/TMC.2013.85

5. Fonseca, N. J. G. and J. Sombrin, "Multi-beam reflector antenna system combining beam hopping and size reduction of effectively used spots," IEEE Antennas Propag. Mag., Vol. 54, No. 2, 88-89, Apr. 2012.
doi:10.1109/MAP.2012.6230720

6. Chou, H.-T., "An efficient synthesis approach for electromagnetic nearand far-field contoured patterns using alternative narrow-beam field functions transformed from the radiations of linearly excited array antennas with least computational complexity," Radio Sci., Vol. 50, No. 5, 365-380, 2015.
doi:10.1002/2014RS005590

7. Moody, H., "The systematic design of the Butler Matrix," IEEE Transactions on Antennas and Propagation, Vol. 12, No. 6, 786-788, Nov. 1964.
doi:10.1109/TAP.1964.1138319

8. Denidni, T. A. and T. E. Libar, "Wide band four-port Butler Matrix for switched multibeam antenna arrays," Proc. IEEE Pers., Indoor, Mobile Radio Commun., Vol. 3, 2461-2464, Sep. 2003.

9. Kozuki, Y. and H. Arai, "Layered Butler Matrix circuit for vertical multi beam of cellular base station antenna," Proc. Int. Symp. Antennas Propag., 561-562, Dec. 2014.

10. Mosca, S., F. Bilotti, A. Toscano, and L. Vegni, "A novel design method for Blass matrix beamforming networks," IEEE Transactions on Antennas and Propagation, Vol. 50, No. 2, 225-232, Feb. 2002.
doi:10.1109/8.997999

11. Varghese, K. J., A. K. Singh, and S. Christopher, "Experimental characterisation of Moreno cross slot couplers for Blass matrix design," Defence Sci. J., Vol. 48, No. 4, 413-416, 2013.
doi:10.14429/dsj.48.3967

12. Neto, A., M. Ettorre, G. Gerini, and P. De Maagt, "Leaky wave enhanced feeds for multibeam reflectors to be used for telecom satellite based links," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 1, 110-120, Jan. 2012.
doi:10.1109/TAP.2011.2167909

13. Fujita, M., K. Takano, S. Tanaka, Y. Utsumi, and T. Murata, "Experimental results on multi-beam receiving antenna for satellite broadcasting," Proc. IEEE Int. Symp. Phased Array Syst. Technol., 117-120, May 2000.

14. Ramanujam, P. and L. R. Fermelia, "Recent developments on multi-beam antennas at Boeing," Proc. 8th Eur. Conf. Antennas Propag. (EuCAP), 405-409, Apr. 2014.

15. Ebling, J. P., G. M. Rebeiz, and B. Schoenlinner, "Multi-beam antenna," U.S. Patent 7 042 420, May 9, 2006.

16. Thornton, J., A. White, and D. Gray, "Multi-beam lens-reflector for satellite communications: Construction issues and ground plane effects," Proc. 3rd Eur. Conf. Antennas Propag. (EuCAP), 1377-1380, Mar. 2009.

17. Zhang, Y. S. and W. Hong, "A millimeter-wave gain enhanced multibeam antenna based on a coplanar cylindrical dielectric lens," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 7, 3485-3488, Jul. 2012.
doi:10.1109/TAP.2012.2194646

18. Van Veen, B. D., D. Barry, and K. M. Buckley, "Beamforming: A versatile approach to spatial filtering," IEEE ASSP Magazine, Vol. 5, No. 2, 4-24, 1988.
doi:10.1109/53.665

19. Rahmat-Samii, Y. and S.-W. Lee, "Directivity of planar array feeds for satellite reflector applications," IEEE Transactions on Antennas and Propagation, Vol. 31, No. 3, 463-470, May 1983.
doi:10.1109/TAP.1983.1143061

20. Wang, J., Y. Fang, and D.-P.Wu, "Enhancing the performance of medium access control for WLANs with multi-beam access point," IEEE Trans. Wireless Commun., Vol. 6, No. 2, 556-565, Feb. 2007.
doi:10.1109/TWC.2007.05245

21. Chou, Z.-T., C.-Q. Huang, and J. M. Chang, "OoS provisioning for wireless LANs with multi-beam access point," IEEE Trans. Mobile Comput., Vol. 13, No. 9, 2113-2127, Sep. 2014.
doi:10.1109/TMC.2013.85

22. Ueno, M., "A systematic design formulation for Butler Matrix applied FFT algorithm," IEEE Transactions on Antennas and Propagation, Vol. 29, No. 3, 496-501, May 1981.
doi:10.1109/TAP.1981.1142601

23. Sheltont, J. P. and K. S. Kelleherz, "Multiple beams from linear arrays," IRE Transaction on Antennas and Propagation, Vol. 9, No. 2, 154-161, 1961.
doi:10.1109/TAP.1961.1144964

24. Chou, H.-T., "An Effective design procedure of multibeam phased array antennas for multisatellite communications," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 10, 4218-4227, Oct. 2016.
doi:10.1109/TAP.2016.2565680

25. Yazdanbakhsh, P. and K. Solbach, "Microstrip Butler Matrix design and realization for 7 T MRI," Magnetic Resonance in Medicine, Vol. 66, No. 1, 270-280, 2011.
doi:10.1002/mrm.22777

26. Khan, O. U., "Design of X-band 4×4 Butler Matrix for microstrip patch antenna array," TENCON 2006, 2006 IEEE Region 10 Conference, IEEE, 2006.

27. Alam, M. M., "Microstrip antenna array with four port Butler Matrix for switched beam base station application," 12th International Conference on Computers and Information Technology, 2009, ICCIT’09, IEEE, 2009.

28. Fakoukakis, F. E., et al., "Design and implementation of Butler matrix-based beam-forming networks for low sidelobe level electronically scanned arrays," International Journal of Microwave and Wireless Technologies, Vol. 7, No. 1, 69-79, 2015.
doi:10.1017/S1759078714000403

29. Muhammad, N. A., et al., "Beam forming networks using reduced size Butler Matrix," Wireless Personal Communications, Vol. 63, No. 4, 765-784, 2012.
doi:10.1007/s11277-010-0164-8

30. Zhai, Y., et al., "Miniaturization design for 8 × 8 Butler matrix based on back-to-back bilayer microstrip," International Journal of Antennas and Propagation, Vol. 2014, 2014.

31. Fonseca, N. J. G., "Printed S-band 4 × 4 nolen matrix for multiple beam antenna applications," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 6, 1673-1678, 2009.
doi:10.1109/TAP.2009.2019919

32. Garcia-Rodriguez, A., et al., "Hybrid analog-digital precoding revisited under realistic RF modeling," IEEE Wireless Communications Letters, Vol. 5, No. 5, 528-531, 2016.
doi:10.1109/LWC.2016.2598777

33. Jayakrishnan, V. M. and S. K. Menon, "Realization of butlermatrix for beamforming in phased array system," Procedia Computer Science, Vol. 93, 223-229, 2016.
doi:10.1016/j.procs.2016.07.204