Vol. 67
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2018-04-11
3D Computation of Electric Field by a Stochastic Method
By
Progress In Electromagnetics Research M, Vol. 67, 119-128, 2018
Abstract
This paper deals with the calculation of electric field in a copper piece of cubic shape which is submitted to a sinusoidal magnetic field. This 3D problem is set into equation and solved by means of two different approaches. A stochastic method for 3-D electric field computations is presented and compared to a finite element method. The main goal of this paper is to compare these two methods on a classical problem putting forward the advantages of the chosen method. First of all, we present the problem modelling. Then, the Monte-Carlo method used to solve 3D time dependent problem is described and is compared to the finite element method, in the last part.
Citation
Jean Lévêque, Melika Hinaje, Kevin Berger, and Michel Panfilov, "3D Computation of Electric Field by a Stochastic Method," Progress In Electromagnetics Research M, Vol. 67, 119-128, 2018.
doi:10.2528/PIERM18010815
References

1. Netter, D., J. Lévêque, P. Masson, and A. Rezzoug, "Monte Carlo method for transient Eddy current calculations," IEEE Transactions on Magnetics, Vol. 40, No. 5, 3450-3456, Sep. 1994.

2. Sadiku, M. N. O., Monte Carlo Methods for Electromagnetics, CRC Press, April 9, 2009.

3. Sadiku, M. N. O., C. M. Akujuobi, S. M. Musa, and S. R. Nelutary, "Direct Monte Carlo simulation of time-dependent problems," The Technology Interface, Vol. 8, No. 1, Fall 2007.

4. Kameni, A., M. Boubakeur, L. Alloui, F. Bouillault, J. Lambretchs, and C. Geuzaine, "A 3D semi implicit method for computing the current density in bulk superconductors," IEEE Transactions on Magnetics, Vol. 50, No. 2, Feb. 2014.
doi:10.1109/TMAG.2013.2284934

5. Aiello, G., S. Alfonzetti, and E. Dilettoso, "Finite-element solution of Eddy-current problems in unbounded domains by means of the hybrid FEM-DBCI method," IEEE Transactions on Magnetics, Vol. 39, No. 3, May 2003.
doi:10.1109/TMAG.2003.810366

6. Rieben, R. N. and D. A. White, "Verification of high-order mixed finite-element solution of transient magnetic diffusion problems," IEEE Transactions on Magnetics, Vol. 42, No. 1, Jun. 2006.
doi:10.1109/TMAG.2005.860127