1. Fedotov, V. A., P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, "Asymmetric propagation of electromagnetic waves through a planar chiral structure," Phys. Rev. Lett., Vol. 97, No. 16, 167401, 2006.
doi:10.1103/PhysRevLett.97.167401
2. Ma, X., C. Huang, M. Pu, Y. Wang, and Z. Zhao, "Dual-band asymmetry chiral metamaterial based on planar spiral structure," Appl. Phys. Lett., Vol. 101, 161901, 2012.
doi:10.1063/1.4756901
3. Mutlu, M., A. E. Akosman, A. E. Serebryannikov, and E. Ozbay, "Asymmetric transmission of linearly polarized waves and polarization angle dependent wave rotation using a chiral metamaterial," Opt. Express, Vol. 19, No. 15, 14290-14299, 2011.
doi:10.1364/OE.19.014290
4. Ji, R., S. W. Wang, X. Liu, and W. Lu, "Giant and broadband circular asymmetric transmission based on two cascading polarization conversion cavities," Nanoscale, Vol. 8, No. 15, 8189-8194, 2016.
doi:10.1039/C6NR00058D
5. Singh, R., E. Plum, C. Menzel, C. Rockstuhl, A. K. Azad, R. A. Cheville, F. Lederer, W. Zhang, and N. I. Zheludev, "Terahertz metamaterial with asymmetric transmission," Phys. Rev. B, Vol. 80, No. 15, 153104, 2009.
doi:10.1103/PhysRevB.80.153104
6. Ozer, Z., F. Dincer, M. Karaaslan, et al. "Asymmetric transmission of linearly polarized light through dynamic chiral metamaterials in a frequency regime of gigahertz-terahertz," Optical Engineering, Vol. 53, No. 7, 075109-075109, 2014.
doi:10.1117/1.OE.53.7.075109
7. Wang, F., A. Chakrabarty, F. Minkowski, K. Sun, and Q.-H. Wei, "Polarization conversion with elliptical patch nanoantennas," Appl. Phys. Lett., Vol. 101, 023101, 2012.
doi:10.1063/1.4731792
8. Liu, L., C. Caloz, and T. Itoh, "Dominant mode leaky-wave antenna with backfire-to-endfire scanning capability," Elec. Letters, Vol. 38, No. 23, 1414-1416, 2002.
doi:10.1049/el:20020977
9. Landy, N. I., S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, "Perfect metamaterialabsorber," Phys. Rev. Lett., Vol. 100, No. 20, 207402, 2008.
doi:10.1103/PhysRevLett.100.207402
10. Kundtz, N. and D. R. Smith, "Extreme-angle broadband metamaterial lens," Nat. Mater., Vol. 9, 129-132, 2010.
doi:10.1038/nmat2610
11. Schurig, D., J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science, Vol. 314, No. 5801, 977-980, 2006.
doi:10.1126/science.1133628
12. Huang, L., X. Chen, H. M¨uhlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, "Dispersionless phase discontinuities for controlling light propagation," Nano Lett., Vol. 12, No. 11, 5750-5755, 2012.
doi:10.1021/nl303031j
13. Altintas, O., E. Unal, O. Akgol, et al. "Design of a wide band metasurface as a linear to circular polarization converter," Modern Physics Letters B, Vol. 31, No. 30, 1750274, 2017.
doi:10.1142/S0217984917502748
14. Cheng, Y., Y. Nie, X. Wang, et al. "An ultrathin transparent metamaterial polarization transformer based on a twist-split-ring resonator," Applied Physics A, Vol. 111, No. 1, 209-215, 2013.
doi:10.1007/s00339-013-7546-1
15. Cheng, Y., C. Wu, Z. Z. Cheng, et al. "Ultra-compact multi-band chiral metamaterial circular polarizer based on triple twisted split-ring resonator," Progress In Electromagnetics Research, Vol. 155, 105-113, 2016.
doi:10.2528/PIER16012501
16. Zhao, J. C. and Y. Z. Cheng, "Ultra-broadband and high-efficiency reflective linear polarization convertor based on planar anisotropic metamaterial in microwave region," Optik-International Journal for Light and Electron Optics, Vol. 136, 52-57, 2017.
doi:10.1016/j.ijleo.2017.02.006
17. Fang, C., Y. Cheng, Z. He, et al. "Design of a wideband reflective linear polarization converter based on the ladder-shaped structure metasurface," Optik-International Journal for Light and Electron Optics, Vol. 137, 148-155, 2017.
doi:10.1016/j.ijleo.2017.03.002
18. Hao, J., Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, "Manipulating electromagnetic wave polarizations by anisotropic metamaterials," Phys. Rev. Lett., Vol. 99, No. 6, 063908, 2007.
doi:10.1103/PhysRevLett.99.063908
19. Ye, Y. and S. He, "90◦ polarization rotator using a bilayered chiral metamaterial with giant optical activity," Appl. Phys. Lett., Vol. 96, No. 20, 203501, 2010.
doi:10.1063/1.3429683
20. Grady, N. K., J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H.-T. Chen, "Terahertz metamaterials for linear polarization conversion and anomalous refraction," Science, Vol. 340, No. 6138, 1304-1307, 2013.
doi:10.1126/science.1235399
21. Zhu, W., I. D. Rukhlenko, Y. Huang, G. Wen, and M. Premaratne, "Wideband giant optical activity and negligible circular dichroism of near-infrared chiral metamaterial based on a complementary twisted configuration," J. Opt., Vol. 15, No. 12, 125101, 2013.
doi:10.1088/2040-8978/15/12/125101
22. Serebryannikov, A. E., M. Beruete, M. Mutlu, and E. Ozbay, "Multiband one-way polarization conversion in complementary split-ring resonator based structures by combining chirality and tunneling," Opt. Express, Vol. 23, No. 10, 13517-13529, 2015.
doi:10.1364/OE.23.013517
23. Markovich, D., A. Andryieuski, M. Zalkovskij, R. Malureanu, and A. Lavrinenko, "Metamaterial polarization converter analysis: limits of performance," Appl. Phys. B, Vol. 112, No. 2, 143-152, 2013.
doi:10.1007/s00340-013-5383-8
24. Serebryannikov, A. E., M. Mutlu, and E. Ozbay, "Dielectric inspired scaling of polarization conversion subwavelength resonances in open ultrathin chiral structures," Appl. Phys. Lett., Vol. 107, No. 22, 221907, 2015.
doi:10.1063/1.4936603
25. Dong, G. X., H. Y. Shi, S. Xia, et al. "Ultra-broadband and high-efficiency polarization conversion metasurface with multiple plasmon resonance modes," Chinese Physics B, Vol. 25, No. 8, 084202, 2016.
doi:10.1088/1674-1056/25/8/084202
26. Zhao, J. C. and Y. Z. Cheng, "A high-effciency and broadband reflective 90◦ linear polarization rotator based on anisotropic metamaterial," Applied Physics B, Vol. 122, No. 10, 255, 2016.
doi:10.1007/s00340-016-6533-6
27. Cheng, Y. Z., C. Fang, X. S. Mao, et al. "Design of an ultrabroadband and high-efficiency reflective linear polarization convertor at optical," IEEE Photonics Journal, Vol. 8, No. 6, 1-9, 2016.
doi:10.1109/JPHOT.2016.2624559
28. Aieta, F., P. Genevet, N. Yu, M. A. Kats, Z. Gaburro, and F. Capasso, "Out-of-plane reflection and refraction of light by anisotropic optical antenna metasurfaces with phase discontinuities," Nano Lett., Vol. 12, No. 3, 1702-1706, 2012.
doi:10.1021/nl300204s
29. Schwanecke, A. S., V. A. Fedotov, V. V. Khardikov, S. L. Prosvirnin, Y. Chen, and N. I. Zheludev, "Nanostructured metal film with asymmetric optical transmission," Nano Lett., Vol. 8, 2940, 2008.
doi:10.1021/nl801794d
30. Menzel, C., C. Helgert, C. Rockstuhl, E. B. Kley, A. Tunnermann, T. Pertsch, and F. Lederer, "Asymmetric transmission of linearly polarized light at optical metamaterials," Phys. Rev. Lett., Vol. 104, 253902, 2010.
doi:10.1103/PhysRevLett.104.253902
31. Wei, Z., Y. Cao, Y. Fan, X. Yu, and H. Li, "Broadband polarization transformation via enhanced asymmetric transmission through arrays of twisted complementary split-ring resonators," Appl. Phys. Lett., Vol. 99, No. 22, 221907, 2011.
doi:10.1063/1.3664774
32. Stolarek, M., D. Yavorskiy, R. Kotynski, C. J. Zapata Rodrıguez, J. Lusakowski, and T. Szoplik, "Asymmetric transmission of terahertz radiation through a double grating," Opt. Lett., Vol. 38, No. 6, 839-841, 2013.
doi:10.1364/OL.38.000839
33. Mutlu, M., A. E. Akosman, A. E. Serebryannikov, and E. Ozbay, "Diodelike asymmetric transmission of linearly polarized waves using magnetoelectric coupling and electromagnetic wave tunneling," Phys. Rev. Lett., Vol. 108, No. 21, 213905, 2012.
doi:10.1103/PhysRevLett.108.213905
34. Zhang, L., P. Zhou, H. Chen, H. Lu, H. Xie, L. Zhang, E. li, J. Xie, and L. Deng, "Ultrabroadband design for linear polarization conversion and asymmetric transmission crossing X- and K-band," Sci. Reports, Vol. 10, No. 1038, 33826, 2016.
doi:10.1038/srep33826
35. Cheng, Y. Z., R. Z. Gong, and L. Wu, "Ultra-broadband linear polarization conversion via diode-like asymmetric transmission with composite metamaterial for teraherze waves," Plasmonics, Vol. 12, No. 4, 1113-1120, 2017.
doi:10.1007/s11468-016-0365-4
36. Kang, M., J. Chen, H. X. Cui, Y. Li, and H. T. Wang, "Asymmetric transmission for linearly polarized electromagnetic radiation," Opt. Express, Vol. 19, No. 9, 8347-8356, 2011.
doi:10.1364/OE.19.008347
37. Shi, J. H., X. C. Liu, S. W. Yu, T. T. Lv, Z. Zhu, H. F. Ma, and T. J. Cui, "Dual-band asymmetric transmission of linear polarization in bilayered chiral metamaterial," Appl. Phys. Lett., Vol. 102, No. 19, 191905, 2013.
doi:10.1063/1.4805075
38. Wang, Y. H., J. Shao, J. Li, M. J. Zhu, J. Q. Li, L. Zhou, and Z. G. Dong, "Broadband asymmetric transmission by rotated bilayer cross-shaped metamaterials," J. Phys. D: Appl. Phys., Vol. 48, 485306, 2015.
doi:10.1088/0022-3727/48/48/485306
39. Wang, Y. H., J. Shao, J. Li, et al. "Broadband high-efficiency transmission asymmetry by a chiral bilayer bar metastructure," J. Appl. Phys., Vol. 117, No. 17, 173102-1-173102-7, 2015.
40. Liu, D. J., Z. Y. Xiao, X. L. Ma, and Z. H. Wang, "Asymmetric transmission of linearly and circularly polarized waves in metamaterial due to symmetry-breaking," Appl. Phys. Express, Vol. 8, No. 5, 052001, 2015.
doi:10.7567/APEX.8.052001