Vol. 73
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2018-01-29
Compact Broadband End-Fire Antenna with Metamaterial Transmission Line
By
Progress In Electromagnetics Research Letters, Vol. 73, 37-44, 2018
Abstract
A broadband end-fire antenna loaded with magneto-electro-dielectric metamaterial (MED-MTM) is presented in this paper. Based on a planar printed structure, many periodic structures are investigated in antenna design. The metal patch is embedded with a C-shaped complementary split-ring resonator (CSRR) array, and many cross slots are etched on the ground plane. The zeroth-order resonance (ZOR) and first-order resonance (FOR) can be excited. As a result of electromagnetic coupling effect, the C-shaped patch and ground plane compose metamaterial transmission line (MTL). For potential applications, the broadband and end-fire antenna can work with a 53.5% (3.81-6.59 GHz) impedance bandwidth. The proposed antenna achieves size reduction, gain improvement and bandwidth enhancement.
Citation
Liang-Yuan Liu, and Jing-Qi Lu, "Compact Broadband End-Fire Antenna with Metamaterial Transmission Line," Progress In Electromagnetics Research Letters, Vol. 73, 37-44, 2018.
doi:10.2528/PIERL17110501
References

1. Wu, B.-I., W. Wang, J. Pacheco, X. Chen, T. M. Grzegorczyk, and J. A. Kong, "A study of using metamaterials as antenna substrate to enhance gain," Progress In Electromagnetics Research, Vol. 51, 295-328, 2005.
doi:10.2528/PIER04070701

2. Alam, M. S., M. T. Islam, and N. Misran, "A novel compact split ring slotted electromagnetic bandgap structure for microstrip patch antenna performance enhancement," Progress In Electromagnetics Research, Vol. 130, 389-409, 2012.
doi:10.2528/PIER12060702

3. Xu, P. H. X., G. M. Wang, Q. Liu, J. F. Wang, and J. Q. Gong, "A metamaterial with multi-band left handed characteristic," Appl. Phys. A, Vol. 107, No. 2, 261-268, 2012.
doi:10.1007/s00339-012-6872-z

4. Li, L. W., Y. N. Li, T. S. Yeo, J. R. Mosig, and O. J. F. Martin, "A broadband and high-gain metamaterial microstrip antenna," Appl. Phys. Lett., Vol. 96, No. 16, 164101, 2010.
doi:10.1063/1.3396984

5. Cai, T., G. M. Wang, X. F. Zhang, Y. W. Wang, B. F. Zong, and H. X. Xu, "Compact microstrip antenna with enhanced bandwidth by loading magneto-electro-dielectric planar waveguided metamaterials," IEEE Trans. on Antennas Propagat., Vol. 63, No. 5, 2306-2311, 2015.
doi:10.1109/TAP.2015.2405081

6. Liu, w., Z. N. Chen, and X. M. Qing, "Metamaterial-based low-profile broadband aperture-coupled grid-slotted patch antenna," IEEE Trans. on Antennas Propagat., Vol. 63, No. 7, 3325-3329, 2015.
doi:10.1109/TAP.2015.2429741

7. Mitra, D., A. Sarkhel, O. Kundu, and S. R. B. Chaudhuri, "Design of compact and high directive slot antennas using grounded metamaterial slab," IEEE Antennas Wireless Propag. Lett., Vol. 14, 811-814, 2015.
doi:10.1109/LAWP.2014.2380772

8. Gupta, A. and R. K. Chaudhary, "A compact dual band short ended metamaterial antenna with extended bandwidth," Microwave Opt. Technol. Lett., Vol. 26, No. 5, 435-441, 2016.

9. Smith, D. R., S. Schultz, P. Markos, and C. M. Soukoulis, "Determination, of effective permittivity and permeability of metamaterials from reflection and transmission coefficients," Phys. Rev. B, Vol. 65, No. 19, 195104, 2001.
doi:10.1103/PhysRevB.65.195104

10. Lai, A., K. M. K. H. Leong, and T. Itoh, "Infinite wavelength resonant antennas with monopolar radiation pattern based on periodic structures," IEEE Trans. on Antennas Propagat., Vol. 55, No. 3, 868-876, 2007.
doi:10.1109/TAP.2007.891845

11. Xu, H.-X., G.-M. Wang, Q. Liu, J.-F. Wang, and J.-Q. Gong, "A metamaterial with multi-band left handed characteristic," Appl. Phys. A, Vol. 107, No. 2, 261-268, 2012.
doi:10.1007/s00339-012-6872-z

12. Matsunaga, N., A. Sanada, and H. Kubo, "Novel two dimensional planar negative refractive index structure," IEICE Trans. Electron., Vol. 89-C, No. 9, 1276-1282, 2006.
doi:10.1093/ietele/e89-c.9.1276

13. Liu, W., Z. N. Chen, and X. M. Qing, "Metamaterial-based low-profile broadband mushroom antenna," IEEE Trans. on Antennas Propagat., Vol. 62, No. 3, 1165-1172, 2014.
doi:10.1109/TAP.2013.2293788