Vol. 72
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2018-01-16
Modulation of Observed Thomson Scattering Spectra in a Plasma Density Irregularity
By
Progress In Electromagnetics Research Letters, Vol. 72, 113-118, 2018
Abstract
Thomson scattering of an electromagnetic wave in a plasma density irregularity is considered. A new effect is found that the scattered waves generation and superposition near the electron density extremum may result in a substantial modulation of the scattered signal frequency spectrum. Due to this effect, the observable spectrum shape will be substantially different from that for the electron density fluctuations. This fact should be taken into account when interpreting Thomson scattering experiments.
Citation
Valery A. Puchkov, "Modulation of Observed Thomson Scattering Spectra in a Plasma Density Irregularity," Progress In Electromagnetics Research Letters, Vol. 72, 113-118, 2018.
doi:10.2528/PIERL17102904
References

1. Gordon, W. E., "Incoherent scattering by free electrons with application to space exploration by radar," Proc. IRE, Vol. 46, No. 1, 1824-1829, 1958.
doi:10.1109/JRPROC.1958.286852

3. Fejer, J. A., "Radio-wave scattering by an ionized gas in thermal equilibrium," J. Geophys. Res., Vol. 65, No. 9, 2635-2636, 1960.
doi:10.1029/JZ065i009p02635

3. Hagfors, T., "Density fluctuations in a plasma in a magnetic field, with applications to the ionosphere," J. Geophys. Res., Vol. 66, No. 6, 1699-1712, 1961.
doi:10.1029/JZ066i006p01699

4., Evans and J. V., "Theory and practice of ionosphere study by Thomson Scatter radar," Proc. IEEE, Vol. 57, No. 4, 496-530, 1969.
doi:10.1109/PROC.1969.7005

5. Farley, D. T., Incoherent scatter radar probing, Modern Ionospheric Science, Copernicus Society, Katlenburg-Lindau, Germany, 1996.

6. Beynon, W. J. G. and P. J. S. Williams, "Incoherent scatter of radio waves from the ionosphere," Rep. Prog. Phys., Vol. 41, No. 6, 909-956, 1978.
doi:10.1088/0034-4885/41/6/003

7. Akhiezer, A., I. Akhiezer, R. Polovin, et al. Plasma Electrodynamics, Pergamon, 1975.

8. Hagfors, T., "Incoherent scattering radar observations of the plasma line with a chirped pulse system," Radio Sci., Vol. 17, No. 3, 727-734, 1982.
doi:10.1029/RS017i003p00727

9. Isham, B. and T. Hagfors, "Observations of the temporal and spatial development of induced and natural plasma lines during HF modification experiments at Arecibo using chirped ISR," J. Geophys. Res., Vol. 98, No. A8, 13605-13625, 1993.
doi:10.1029/93JA00879

10. Mishin, E. and T. Hagfors, "On origin of outshifted plasma lines during HF modification experiments," J. Geophys. Res., Vol. 102, No. A12, 27265-27269, 1997.
doi:10.1029/97JA02448

11. Krasnoselskikh, V. V., T. Dudok deWit, and S. D. Bale, "Determining the wavelength of Langmuir wave packets at the Earth’s bow shock," Ann. Geophys., Vol. 29, No. 3, 613-617, 2011.
doi:10.5194/angeo-29-613-2011

12. Isham, B., M. T. Rietveld, P. Guio, et al. "Cavitating langmuir turbulence in the terrestrial aurora," Phys. Rev. Lett., Vol. 108, No. 10, 105003, 2012.
doi:10.1103/PhysRevLett.108.105003

13. Puchkov, V. A., "Longitudinal fluctuations in a nonuniform collisional plasma with nonequilibrium particle distributions," Plasma Phys. Rep., Vol. 35, No. 3, 234-243, 2009.
doi:10.1134/S1063780X09030064

14. Klimontovich, Yu. L., The Statistical Theory of Non-equilibrium Processes in a Plasma, Pergamon, 1967.

15. Ginzburg, V. L., The Propagation of Electromagnetic Waves in Plasmas, Pergamon, 1970.

16. Abramowitz, M. and I. Stegun, Handbook of Mathematical Functions, National Bureau of Standards, 1964.

17. Puchkov, V. A., "Theory of fluctuations in a nonequilibrium plasma with allowance for collisions between plasma particles," Plasma Phys. Rep., Vol. 24, No. 5, 436-449, 1998.

18. Puchkov, V. A., "Electrostatic fluctuations in nonequilibrium plasmas with particle collisions," Phys. Lett. A, Vol. 372, No. 42, 6400-6403, 2008.
doi:10.1016/j.physleta.2008.08.058