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Modulation of Observed Thomson Scattering Spectra in a Plasma
Density Irregularity

Valery A. Puchkov*

Abstract—Thomson scattering of an electromagnetic wave in a plasma density irregularity is
considered. A new effect is found that the scattered waves generation and superposition near the
electron density extremum may result in a substantial modulation of the scattered signal frequency
spectrum. Due to this effect, the observable spectrum shape will be substantially different from that for
the electron density fluctuations. This fact should be taken into account when interpreting Thomson
scattering experiments.

1. INTRODUCTION

Thomson (incoherent) scattering technique is based on the ability of randomly distributed free electrons
to exhibit weak scattering of electromagnetic waves. The scattered spectrum allows for observing plasma
fluctuations of various types and getting a valuable information about the electron density, temperature,
and constituents of the plasma [1–6].

The scattered spectrum consists mainly of 2 parts: the ion line produced by ion-acoustic waves and
the plasma line caused by the Langmuir fluctuations with the frequency close to the electron Langmuir
frequency. These parts of the spectrum are formed by different fluctuation mechanisms. In this paper,
we will consider new peculiarities of the plasma line related to the inhomogeneous structure of the
plasma.

In the homogeneous plasma the scattered spectrum is proportional to the electron density
fluctuation spectrum multiplied by the scattering volume (see e.g., [7]). Thus, the shape of the scattered
spectrum repeats that of the electron density spectrum. If the plasma is inhomogeneous, such a
coincidence does not take place anymore. For example, a gradient of the electron density results in
a broadening of the plasma line obsereved in most of the experiments. In order to eliminate this effect
and recreate real electron density spectrum, chirp sounding pulses can be used [8,9].

The most significant influence of the plasma irregularities on the plasma density fluctuation
spectrum takes place in plasma density cavities where the Langmuir waves can be trapped, enhanced,
and acquire a discrete frequency spectrum [10–12]. These effects depend essentially on the collision
frequency of electrons and the spatial scale of the irregularities. For example, in small-scale ionospheric
irregularities with sizes ∼ 10 m or less the collisional damping has little effect on the fluctuation spectra.
This leads to a modulated electron density spectrum in which the modulation characteristics depend
on the geometrical characteristics of the irregularities.

In this letter, we show that peculiarities of plasma density fluctuations generated in the irregularities
might not be the only reason for the modulation of the spectrum which can be observed in experiments
on Thomson scattering. Superposition of the scattered waves excited in different regions of the plasma
irregularity may result in additional modulation of the observed frequency spectrum. In such a case
correct interpretation of the scattering spectra requires to take this effect into consideration.
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2. PROBE WAVE SCATTERING IN A ONE-DIMENSIONAL LAYER

We consider a one-dimensional plasma layer where the electron concentration ne changes in the direction
x. The probe and backscattered waves are supposed to propagate along the x-direction, as well. Such
a geometry corresponds to the situation when the electron density variation has the greatest impact
on the scattered spectrum. Let the ambient electron density ne (x) depend on the coordinate x in the
following way

ne(x) = n0 +
1
2
n0b

2x2 (1)

where n0 is the density at the extremum point. The parameter b determines the size of the irregularity.
The total electron density variation Ne (t, x) consists of the unperturbed density ne(x) and small
amplitude fluctuations δne(t, x)

Ne (t, x) = ne(x) + δne(t, x), |δne| � ne. (2)
Assume that the probe wave is incident on the irregularity from the right (i.e., in the negative

direction). The electric field of this wave varies with the coordinate and time as follows

E1 (t, x) = a1 sin (ω1t− k1x) =
a1

2i
exp {i [ω1t− k1x]} + C.C. (3)

where k1 = −ω1/c < 0 is the wave number of the probe wave; C.C. means complex conjugate and will
be omitted in the next calculations. The wavenumber k1 is taken not to depend on density ne, as the
frequency ω1 in the scattering experiments is usually much more than the electron Langmuir frequency
ωp:

ω1 � ωp. (4)
The amplitude a1 in the approximation of Eq. (4) is a constant because only a small part of incident

power is scattered by the fluctuations. The scattered wave amplitude a2 can be found from the equation
derived in [13]

c
∂

∂x
a2(ω1 + ω, x) =

2πi
ω1

e2e
me

a1 exp(iΔkx)δne(ω, x),

Δk = k2 − k1 ≈ 2
ω1

c

(5)

where Δk is the difference between the wavenumbers of the scattered and probe waves. In contrast to
a1, the scattered amplitude a2 is a function of x and t. We consider the stationary problem, so that
the average intensity of both the Langmuir fluctuations and the amplitude a2 does not depend on time.

The functions a2(ω1 + ω, x) and δne(ω, x) are the Laplace transforms of the fluctuations a2(t, x),
and δne(t, x)

L̂t(ω) =
1
2π

∞∫
0

dt exp [−i (ω − iΔ) t] , f (x, ω) = L̂t(ω)f (t, x) (6)

where f (t, x) can be replaced with δne(t, x), and a2(t, x). This Fourier-Laplace operator was proposed
in [14].

In this equation f is an arbitrary function, Δ > 0, and the limit Δ → 0 should be taken in the
final results. Now the scattered electric field E2 can be represented in the form similar to Eq. (3)

E2(t, x) =
1
2i

∫
dω2a2 (x, ω2) exp {i [ω2t− k2x]} (7)

where k2 = ω2/c > 0. The amplitude a2 is nonzero when |Δω2| is of the order or less than ωp. This
means that ω2 ∼ ω1 and ω2 � ωp. The sign of k2 means that the wave 2 is scattered in the positive
direction, opposite to the incident wave 1.

If the ambient electron density and the fluctuation amplitude vary only slightly within the plasma
wavelength (which is usual for the majority of the Thomson scattering experiments in a plasma), the
fluctuation δne(t, x) can be represented by the geometrical optics approximation [15]

δn (ω, x) = δñ (ω, x) exp
[
−i
∫ x

0
ψ
(
ω, x′

)
dx′
]

(8)
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where δñ is the amplitude of the fluctuation, and ψ is the wavenumber of the plasma wave. The
wavenumber ψ is the solution of the dispersion relation for the Langmuir waves [15]

ω2 = ω2
0 (x)

(
1 + 3v2

Te

ψ2

ω2
p0

)
(9)

where ω0 (x) =
[
4πe2ne(x)/me

]1/2 is the electron Langmuir frequency, and vTe = (Te/me) is the electron
thermal velocity; e, me, and Te are the electron charge, mass, and temperature, respectively. ωp0 is the
electron Langmuir frequency ω0 (x) at the point x = 0. The relationship in Eq. (9) assumes that the
collisional and Landau damping rates of the Langmuir waves are negligible in the interval where the
scattered wave is formed. As is shown below, this interval can be even less than the irregularity size.

The solution of Equation (9) takes the form

ψ (ω, x) = ψ (ω, 0)
[
1 − x2/d2 (ω)

]1/2
,

ψ (ω, 0) =
[
2ωp0 (ω − ωp0) /3v2

Te

]1/2
,

d (ω) =
2
b

[(ω − ωp0) /ωp0]
1/2 .

(10)

where ψ (ω, 0) is the wavenumber of the plasma wave at the point x = 0, and d (ω) is the coordinate of
the point where the Langmuir wave propagating outside the irregularity is reflected towards its center.
In fact, the interval of x, where the Langmuir wave is present, has the length 2d (ω), and this interval
increases with an increase in the frequency shift ω − ωp0.

Eq. (5) must be solved with the boundary condition lim
x→−∞a2 = 0. Then, using Eq. (8) we find

from Eq. (5)

as
2 (ω1 + ω) =

2πi
cω1

e2e
me

a1

∫ +∞

−∞
dxδñ (ω, x) exp [iT (x)] , T (x) =

∫ x

0

[
Δk − ψ

(
ω, x′

)]
dx′ (11)

where the left-hand side as
2 (ω1 + ω) = a2 (ω1 + ω, x = +∞) represents the amplitude of the scattered

wave as it leaves the plasma layer.
The integrand in the expression for as

2 includes the exponential exp [iT (x)] which is a fast oscillating
function except the interval near the point where the derivative T ′ (x) is equal to zero. This condition
is fulfilled if Δk = ψ (ω, x) (i.e., the scattering wavenumber is equal to that of the Langmuir wave). The
point x where Δk = ψ (ω, x) is, in fact, the scattered wave generation point. Obviously, the parabolic
irregularity has 2 generation points. The above-mentioned interval increases when x approaches zero,
as ψ (ω, x) varies the slowest at its maximum point x = 0 (see Eq. (10)). Thus, the vicinity of the
point x = 0 makes the main contribution to the scattered wave amplitude, and we can replace here the
wavenumber difference Δk − ψ (ω, x) in Eq. (11) with the power series expansion

Δk − ψ (ω, x) ≈ χ (ω) + βx2, χ = Δk − ψ (ω, 0) , β =
b2ω2

p0

12v2
TeΔk

. (12)

This relationship is valid when |x| � d (ω). In this interval the slowly varying fluctuation amplitude
δñ (ω, x) can be replaced with its value δñ (ω, 0) at the point x = 0. Therefore, the integration in Eq. (11)
reduces to

+∞∫
0

dx cos
(
β

3
x3 + χx

)
= πβ−1/3Ai

(
β−1/3χ

)
(13)

where Ai is the Airy function [16]. Taking this expression into account, we obtain the following
relationship for the scattering amplitude as

2

as
2 (ω1 + ω) = 4π2i

e2ea1

cω1me
β−1/3Ai

(
β−1/3χ

)
δñ (ω, 0) . (14)
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3. FREQUENCY SPECTRUM OF THE SCATTERED WAVE

In view of the Fourier-Laplace transform in Eq. (6) the frequency spectrum of the scattered wave is
defined as follows〈

E2
2

〉
Ω

=
〈
E2

2

〉
Ω,x=+∞ =

1
2π

∫ +∞

−∞
dτ exp (−iΩτ) 〈E2

2

〉
τ,x=+∞ ,

〈
E2

2

〉
τ

= 〈E2 (t)E2 (t+ τ)〉 (15)

where Ω = ω1 + ω and the angle brackets denote time average. This relationship corresponds to
the stationary process when the statistical moments depend only on the time difference between the
arguments of the random values entering into the expression for the moments. The use of the transform
in Eq. (6) provides a simple way to find the frequency spectrum if the fluctuation is known [14]

lim
Δ→0

2Δ 〈E2 (Ω, x)E∗
2 (Ω, x)〉 =

1
2π
〈
E2

2

〉
Ω,x

. (16)

Eqs. (3), (6), (16) enable us to relate the scattered amplitude as
2 (14) and the spectrum

〈
E2

2

〉
Ω

=〈
E2

2

〉
Ω,x=+∞

lim
Δ→0

πΔ
〈
as

2 (Ω, x) as,∗
2 (Ω, x)

〉
=
〈
E2

2

〉
Ω,x

. (17)

The relationship similar to Eq. (16) is valid for the electron density fluctuation amplitude δñ (ω, x).
Using this relationship and taking into account Eq. (17) we find the expression for the scattering
spectrum 〈

E2
2

〉
ω1+ω

= 4π4e2e
V 2

1

c2
β−2/3Ai2

(
β−1/3χ

) 〈
δñ2
〉
ω,x=0

(18)

where V1 = |ee| |a1| / (meω1) is the module of the oscillatory velocity of free electrons in the probe wave
electric field E1. The factor

〈
δñ2
〉
ω,x=0

in Eq. (18) is the frequency spectrum of the electron dencity
fluctuation amplitude δñ which is defined similarly to Eq. (15).

4. DISCUSSION OF THE RESULTS

The scattering spectrum in Eq. (18) is proportional to the spectral function
〈
δñ2
〉
ω,x=0

for the amplitude
of the electron density fluctuations. In this letter, we will not discuss the explicit form of

〈
δñ2
〉
ω,x=0

which is a separate task. An example of calculating the electron density fluctuation amplitude δñ in an
inhomogeneous plasma is given in [13]. It is shown in this paper that the amplitude δñ is determined
by the so-called fluctuation source discussed in [17, 18]. This source depends on ω only slightly in the
frequency region where the plasma line is present. Thus, the spectral function of the plasma wave
amplitude

〈
δñ2
〉
ω,x=0

will be a slowly varying function of ω provided it is not modulated due to the
effect of the plasma wave trapping inside the irregularity.

In order to illustrate most clearly the effect of the plasma irregularity on the Thomson scattering
we consider the following realistic situation. The plasma wave damping is taken to be negligible in a
small interval |x| � d where the scattering spectrum (18) is formed. This corresponds to the absence of
a damping term in the argument of the exponential in Eq. (8). At the same time, we suppose that the
plasma wave damping is heavy in a larger interval (0, d). This condition means that the plasma wave
trapping effect [10–12] will be negligible. Therefore, under these conditions the dependence of

〈
δñ2
〉

on
ω in Eq. (18) can be neglected, and the frequency dependence of the scattering spectrum

〈
E2

2

〉
ω1+ω

will
be determined only by the influence of the irregularity on the scattering process.

Under these assumptions, the spectrum of the plasma line in Eq. (18) is determined by the factor
Ai2
(
β−1/3χ

)
and takes the form shown in Fig. 1. This curve is calculated with the following ionospheric

plasma parameters: ωp0/ (2π) = 5 MHz, νef = 5 × 102 s−1, ω1/ (2π) = 233 MHz, vTe/ωp,0 = 1 cm, and
b = 4.47 × 10−5 cm−1 (the electron density changes 10 percent at a distance of 100 m).

It is seen from Fig. 1 that the spectrum is a modulated function. The reason for such a modulation
can be rather simple. In fact, in a parabolic irregularity we have 2 scattered waves generated in the
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Figure 1. Plasma line spectrum versus relative frequency shift δω = (ω − ωp0) /ωp0. The plasma line
intensity is normalized to its maximum value.

points on opposite sides of the irregularity where Δk = ψ (ω, x) (see above). When the waves leave
the irregularity, they interfere with each other. The distance between generation points depends on the
frequency ω. Thus, for different frequencies ω the scattered waves will either amplify or suppress each
other.

The modulation period depends on the relative frequency shift δω. It is the largest near the plasma
line maximum and decreases with an increase in δω. Knowing behavior of the Airy function, we can
obtain the maximum modulation period

[δω]max ≈ 3 ×
(
vTe

ωp0

)4/3

(bΔk)2/3 . (19)

If the electron temperature Te and the ambient electron density n0 are found from other observations,
all the values in Eq. (19) except b can be calculated. In such a case, measuring the modulation period
[δω]max, one can find experimentally the inhomogeneity parameter b.

Nonstationary processes in the plasma may result in blurring of the plasma line spectrum
(overlapping of the local maxima). In particular, such effect may arise from diffusion spreading of plasma
irregularities. Thus, if the observation period is less than the spreading time, the modulation will be
detected. Otherwise the unmodulated spectrum will be observed. Hence, by varying the observation
period and detecting the period when the modulation appears, it is possible to estimate the lifetime of
the irregularity.

5. CONCLUSIONS

We have shown that the process of the Thomson scattering of electromagnetic wave in a plasma
irregularity may result in a frequency modulation of the observed scattering spectrum. The modulation
period depends on the irregularity size. On the basis of our results, the irregularity size and lifetime can
be found experimentally from the Thomson scattering spectrum. The modulation effect described in this
paper should be taken into account when interpreting the Thomson scattering spectra for inhomogeneous
plasmas.
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