Vol. 64
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2018-02-09
Compatible Finite Element Discretization of Generalized Lorenz Gauged Charge-Free a Formulation with Diagonal Lumping in Frequency and Time Domains
By
Progress In Electromagnetics Research M, Vol. 64, 167-179, 2018
Abstract
The finite element implement of the generalized Lorenz gauged A formulation has been proposed for low-frequency modeling. However, the inverse of mass matrix of intermediate scalar in the finite element implement leads to additional computation cost and dense coefficient matrix. In this paper we propose to adopt a diagonal lumping mass matrix in the finite element discretization of the generalized Lorenz gauged double-curl operator in charge-free electromagnetic problems. Consequently, a sparser discrete system with improved condition number is thus obtained which is more favourable for low-frequency modeling in frequency-domain analysis. Furthermore, we apply the diagonal lumping formulation in time-domain analysis, showing that it can remedy spurious linear growth problem. Numerical examples are used to demonstrate the validity.
Citation
Peng Jiang, Guozhong Zhao, Qun Zhang, and Zhenqun Guan, "Compatible Finite Element Discretization of Generalized Lorenz Gauged Charge-Free a Formulation with Diagonal Lumping in Frequency and Time Domains," Progress In Electromagnetics Research M, Vol. 64, 167-179, 2018.
doi:10.2528/PIERM17091803
References

1. Jin, J. M., The Finite Element Method in Electromagnetics, 3rd Ed., John Wiley & Sons, 2015.

2. Lee, S. C., J. F. Lee, and R. Lee, "Hierarchical vector finite elements for analyzing waveguiding structures," IEEE Transactions on Microwave Theory and Techniques, Vol. 51, No. 8, 1897-1905, 2003.
doi:10.1109/TMTT.2003.815263

3. Lee, S. H. and J. M. Jin, "Application of the treecotree splitting for improving matrix conditioning in the full-wave finite-element analysis of high-speed circuits," Microwave and Optical Technology Letters, Vol. 50, No. 6, 1476-1481, 2008.
doi:10.1002/mop.23403

4. Zhu, J. and D. Jiao, "A theoretically rigorous full-wave finite-element-based solution of Maxwell’s equations from DC to high frequencies," IEEE Transactions on Advanced Packaging, Vol. 33, No. 4, 1043-1050, 2010.
doi:10.1109/TADVP.2010.2057428

5. Zhu, J. and D. Jiao, "A rigorous solution to the low-frequency breakdown in full-wave finiteelement- based analysis of general problems involving inhomogeneous lossless/lossy dielectrics and nonideal conductors," IEEE Transactions on Microwave Theory and Techniques, Vol. 59, No. 12, 3294-3306, 2011.
doi:10.1109/TMTT.2011.2171707

6. Venkatarayalu, N. V., M. N. Vouvakis, Y. B. Gan, et al. "Suppressing linear time growth in edge element based finite element time domain solution using divergence free constraint equation," Antennas and Propagation Society International Symposium, 193-196, 2005.

7. Hwang, C. T. and R. B.Wu, "Treating late-time instability of hybrid finite-element/finite-difference time-domain method," IEEE Transactions on Antennas and Propagation, Vol. 47, No. 2, 227-232, 1999.
doi:10.1109/8.761061

8. Golias, N. A. and T. D. Tsiboukis, "Magnetostatics with edge elements: A numerical investigation in the choice of the tree," IEEE Transactions on Magnetics, Vol. 30, No. 5, 2877-2880, 1994.
doi:10.1109/20.312537

9. Kikuchi, F., "Mixed and penalty formulations for finite element analysis of an eigenvalue problem in electromagnetism," Computer Methods in Applied Mechanics and Engineering, Vol. 64, No. 1, 509-521, 1987.

10. Chen, Z., Q. Du, and J. Zou, "Finite element methods with matching and nonmatching meshes for Maxwell equations with discontinuous coefficients," SIAM Journal on Numerical Analysis, Vol. 37, No. 5, 1542-1570, 2000.
doi:10.1137/S0036142998349977

11. Benzi, M., G. H. Golub, and J. Liesen, "Numerical solution of saddle point problems," Actanumerica, Vol. 14, 1-137, 2005.

12. Bespalov, A. N., "Finite element method for the eigenmode problem of a RF cavity resonator," Russian Journal of Numerical Analysis and Mathematical Modelling, Vol. 3, No. 3, 163-178, 1988.
doi:10.1515/rnam.1988.3.3.163

13. Hiptmair, R., "Finite elements in computational electromagnetism," Acta Numerica, Vol. 11, 237-339, 2002.

14. Chew, W. C., "Vector potential electromagnetics with generalized gauge for inhomogeneous media: Formulation," Progress In Electromagnetics Research, Vol. 149, 69-84, 2014.
doi:10.2528/PIER14060904

15. Li, Y. L., S. Sun, Q. I. Dai, et al. "Finite element implementation of the generalized-Lorenz gauged A-Φ formulation for low-frequency circuit modeling," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 10, 4355-4364, 2016.
doi:10.1109/TAP.2016.2593748

16. Li, Y. L., S. Sun, Q. I. Dai, and W. C. Chew, "Vectorial solution to double curl equation with generalized coulomb gauge for magnetostatic problems," IEEE Transactions on Magnetics, Vol. 51, No. 8, 1-6, 2015.
doi:10.1109/TMAG.2015.2423267

17. Bossavit, A. and L. Kettunen, "Yee-like schemes on a tetrahedral mesh, with diagonal lumping," International Journal of Numerical Modelling Electronic Networks Devices and Fields, Vol. 12, 129-142, 1999.
doi:10.1002/(SICI)1099-1204(199901/04)12:1/2<129::AID-JNM327>3.0.CO;2-G

18. Magele, C., H. Stogner, and K. Preis, "Comparison of different finite element formulations for 3D magnetostatic problems," IEEE Transactions on Magnetics, Vol. 24, No. 1, 31-34, 1988.
doi:10.1109/20.43846