Vol. 63
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2017-12-02
Shielding Effectiveness of a Metamaterial Measured at Microwave Range of Frecuency, Known as Wire Screen Metamaterial (WSM)
By
Progress In Electromagnetics Research M, Vol. 63, 33-46, 2018
Abstract
This paper presents the study of an artificial material, made up of a periodic structure, defined by a unit cell, consisting of a finite number N of periodic layers of thin conducting cylinders placed between two dielectric planes. These artificial materials known as metamaterials can be regarded as a homogeneous material with effective constitutive parameters impossible to achieve with naturally occurring materials, such as negative values for both magnetic permeability and electric permittivity. An analytical model has been developed to study the effective electric permittivity of the whole system in terms of the unit cell dimensions and the frequency of the incident electromagnetic wave. Simulations of the effective electric permittivity of the metamaterial were performed by varying the geometry of the metamaterial. This analysis enables the design and construction of structures with properties that make them an attractive candidate for shielding applications in the range of microwave frequencies. The metamaterial has been constructed with four rows of 5 bronze conducting rods each. We have made experimental measurements of the shielding effectiveness of these materials when subjected to a electromagnetic plane wave with electric field polarized along the direction of the conducting rods, and conversely, with electric field polarized perpendicular to the rods. Non-zero values for shielding effectiveness were observed in the first polarization, and zero values in the second case.
Citation
Silvina Boggi, Ramiro Alonso, and Walter Gustavo Fano, "Shielding Effectiveness of a Metamaterial Measured at Microwave Range of Frecuency, Known as Wire Screen Metamaterial (WSM)," Progress In Electromagnetics Research M, Vol. 63, 33-46, 2018.
doi:10.2528/PIERM17090603
References

1. Engheta, N., Metamaterials Physics and Engineering Explorations, IEEE Press, 2006.

2. Caloz, C. and T. Itoh, Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications, Published by John Wiley and Sons, Inc., 2006.

3. Pendry, J. B., "Metamaterials and the control of electromagnetic fields," Conference on Coherence and Quantum Optics, OSA Technical Digest (CD), Optical Society of America,2007.

4. Kock, W. E., "Radio lenses," Bell Lab. Rec., Vol. 24, 177-216, 1946.

5. Collin, R., Field Theory of Guided Waves, McGraw Hill, USA, 1960.

6., Veselago and V. G., "The electrodynamics of substances with simultaneously negative values of E and p," Sov. Phys. Usp., Vol. 10, No. 4, 509-514, 1967.

7. Maslovski, S. I., S. A. Tretyakov, and P. A. Belov, "Wire media with negative effective permittivity a quasi-static model," Modelmicrowave and Optical Technology and Optical Letters, Vol. 35, No. 1, p´aginas, Oct. 5, 2000.

8. Pendry, J. B., A. J. Holden, D. J. Ronbinson, and W. J. Stewart, "Magnetism from conductors and Enhanced Nonlinear Phenomena," IEEE Trans. on MTT, Vol. 47, 11, p´aginas, Feb. 1999.

9. Casey, K. F., "Electromagnetic shielding behavior of wire-mesh screens," IEEE Transactions on Electromagnetic Compatibility, Vol. 30, No. 3, Aug. 1988.
doi:10.1109/15.3309

10. Press, W. H., B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes in C: The Art of Scientific Computing, Cambridge University Press, 1992.

11. Surhone, L. M., M. T. Timpledon, and S. F. Marseken Savitzky-Golay, Savitzky-Golay Smoothing Filter, 116 pages, VDM Publishing, Aug. 10, 2010.

12. Rahman, M. and M. A. Stuchly, "Transmission line periodic circuit representation of planar microwave photonic bandgap structures," Microwave and Optical Tech. Lett., Vol. 30, No. 1, 15-19, 2001.
doi:10.1002/mop.1207

13. Lovat, G., P. Burghiognoli, and S. Celozzi, "Shielding properties of a wire medium screen," IEEE Trans. on EMC, Vol. 50, 1, paginas, Feb. 2008.

14. Yang, F. and Y. Rahmat-Samii, Electromagnetic Band Gap Structures in Antenna Engineering, Cambridge University Press, 2009.

15. Eleftheriades, G. V. and K. G. Balmain, Negative-Refraction Metamaterials Fundamental Principles and Applications, IEEE Press, 2005.
doi:10.1002/0471744751

16. Boggi, S., A. Kieselewsky, and W. G. Fano, "A model for the effective dielectric permittivity of Metamaterials," Proceedings of RPIC-IEEE 2015 Symposium, Oct. 2015.

17. Boggi, S., R. Alonso, and W. G. Fano, "Eficiencia de blindaje de nuevos materiales," Proceedings of IEEE Biennial Congress of Argentina (ARGENCON), 1-5, 2016.

18. Clayton, P. R., Introduction to Electromagnetic Compatibility, 2nd Ed., Wiley Interscience, Jan. 2006.

19. Trainotti, V., W. G. Fano, and L. A. Dorado, Ingenieria Electromagnetica Tomo I, Editorial Nueva Libreria, Buenos Aires, Arg., 2003.

20. Jordan, E. J., Electromagnetic Waves and Radiating Systems, Wiley, 1950.

21. Trainotti, V., W. G. Fano, and L. A. Dorado, Ingenieria Electromagnetica Tomo II, Editorial Nueva Libreria, Buenos Aires, Arg., 2005.

22. Pozar, D. M., Microwave Engineering, 4th Ed., Wiley, 2011.

23. Schelkunoff, S. A., Electromagnetics Wave, Van Nostrand Company, USA, Apr. 1943.

24. Balanis, C. A., Antenna Theory: Annalysis and Design, Wiley, 2005.

25. IEEE Standard Method for Measuring the effectiveness, IEEE-Std-299-1997.

26. Wilson, P. F., "Techniques for measuring the electromagnetic shielding effectiveness of materials: Part I: Far field source simulation," IEEE Transactions on Electromagnetic Compatibility, Vol. 30, No. 3, Aug. 1988.