Vol. 71
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2017-10-29
Effect of Surface Impedance on Radiation Fields of Spherical Antennas
By
Progress In Electromagnetics Research Letters, Vol. 71, 83-89, 2017
Abstract
Influence of surface impedance on radiation fields of spherical antennas excited by radially oriented electric dipole is investigated by using a Green's function for a space outside a spherical scatterer. This approach allows us to obtain analytical expressions for radiation fields of an impedance spherical antenna in the wave zone. The spherical antenna with the scatterer coated with a metamaterial layer is also considered. The surface impedance required for radiomasking of the spherical scatterer of resonant dimensions was estimated by mathematical modeling.
Citation
Yuriy M. Penkin, Victor A. Katrich, Mikhail Nesterenko, and Natalia K. Blinova, "Effect of Surface Impedance on Radiation Fields of Spherical Antennas," Progress In Electromagnetics Research Letters, Vol. 71, 83-89, 2017.
doi:10.2528/PIERL17090102
References

1. Resnikov, G. B., "Antennas of flying vehicles," Soviet Radio, Moscow, 1967 (in Russian).

2. Bolle, D. M. and M. D. Morganstern, "Monopole and conic antennas on spherical vehicles," IEEE Trans. Antennas and Propagat., Vol. 17, 477-484, 1969.
doi:10.1109/TAP.1969.1139479

3. Tesche, F. M., R. E. Neureuther, and R. E. Stovall, "The analysis of monopole antennas located on a spherical vehicle: Part 2, Numerical and experimental results," IEEE Trans. EMC, Vol. 18, 8-15, 1976.

4. Ock, J. S. and H. J. Eom, "Radiation of a Hertzian dipole in a slotted conducting sphere," IEEE Trans. Antennas and Propagat., Vol. 57, 3847-3851, 2009.
doi:10.1109/TAP.2009.2026065

5. Rezunenko, V. A., S. V. Roshchupkin, and E. I. Radchenko, "Diffraction field of the vertical dipole from sphere with aperture, screening by the dielectric layer," Proc. Int. Conf. ICATT’2007, 128-130, 2007.

6. Li, L.-W., T. Fei, Q. Wu, and T.-S. Yeo, "Convergence acceleration for calculatingradiated fields by a vertical electric dipole in the presence of a large sphere," Proc. IEEE AP Int. Symp., 117-120, 2005.

7. Amin, M., "Scattered fields by a sphere present in near field of a Hertz dipole," Proc. Int. Conf. INMIC’2001, 165-172, 2001.

8. Penkin, D. Yu., V. A. Katrich, Yu. M. Penkin, M. V. Nesterenko, V. M. Dakhov, and S. L. Berdnik, "Electrodynamic haracteristics of a radial impedance vibrator on a perfect conduction sphere," Progress In Electromagnetics Research B, Vol. 62, 137-151, 2015.
doi:10.2528/PIERB14120102

9. Penkin, Yu. M. and V. A. Katrich, Excitation of Electromagnetic Waves in the Volumes with Coordinate Boundaries, Fakt, Kharkov, 2003 (in Russian).

10. Abramowits, M. and I. A. Stegun (Editor-In-Chief), Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables, National Bureau of Standards, Applied Mathematics Series-55, 1964.

11. Yoshitomi, K., "Radiation from a slot in an impedance surface," IEEE Trans. Antennas and Propagat., Vol. 49, 1370-1376, 2001.
doi:10.1109/8.954925

12. Berdnik, S. L., V. A. Katrich, V. I. Kiyko, M. V. Nesterenko, and Yu. M. Penkin, "Power characteristics of a T-junction of rectangular waveguides with multi-element monopole-slotted coupling structure," Telecommunication and Radio Engineering, Vol. 75, 489-506, 2016.
doi:10.1615/TelecomRadEng.v75.i6.20

13. Lagarkov, A. N., V. N. Semenenko, A. A. Basharin, and A. Lagarkov, "Abnormal radiation pattern of metamaterial waveguide," PIERS Online, Vol. 4, No. 6, 641-644, 2008.
doi:10.2529/PIERS071220103345