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Effect of Surface Impedance on Radiation Fields
of Spherical Antennas

Yuriy M. Penkin, Victor A. Katrich, Mikhail V. Nesterenko*, and Natalia K. Blinova

Abstract—Influence of surface impedance on radiation fields of spherical antennas excited by radially
oriented electric dipole is investigated by using a Green’s function for a space outside a spherical
scatterer. This approach allows us to obtain analytical expressions for radiation fields of an impedance
spherical antenna in the wave zone. The spherical antenna with the scatterer coated with a metamaterial
layer is also considered. The surface impedance required for radiomasking of the spherical scatterer of
resonant dimensions was estimated by mathematical modeling.

1. INTRODUCTION

Vibrator antennas of meter and decimeter wavelengths are now widely used on mobile objects including
aerial and space vehicles [1], whose body or its component part can be approximated by spherical
surfaces with diffraction dimensions lying in the resonant region. Asymmetrical radially oriented
vibrator radiators (monopoles) are applied most frequently due to simplicity of their excitation. The
radiation fields of such spherical antennas were studied earlier both in the dipole approximation (see,
e.g., [1–7]) and for the resonant perfectly conducting [3] and impedance [8] monopoles. In all these
cases, however, the surface of the spherical scatterer was considered to be perfectly conductive. In
the present article, the influence of the impedance layer coating the sphere upon the radiation field of
the antenna excited by a radially oriented electric dipole is investigated within the framework of the
impedance approach. A special case of the sphere coated by a layer of metamaterial is also considered.

2. FIELDS OF A SPHERICAL ANTENNA IN THE WAVE ZONE

A rigorous analysis of radiation fields induced by a radial electric dipole located on an impedance sphere
is performed using the Green’s function for the Hertz vector potential. Using the Green’s function
representation required for the problem solution [9], we can write the radial component of the electric
Green’s function Ge

ρρ′(ρ, θ, ϕ; ρ′, θ′, ϕ′) in a system of spherical coordinates (ρ, θ, ϕ) for a homogeneous
space outside the sphere with material parameters (ε1, μ1) as
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ρρ′
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Here Pn(cos θ) are the Legendre polynomials, and the functions hn(ρ, ρ′) can be determined from the
inhomogeneous Bessel differential equation with the delta-function δ(ρ − ρ′) in the right-hand side.
Taking into account the impedance boundary condition
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surface S (zi is the constant intrinsic impedance, �n is the external normal vector) and the radiation
condition at infinity, we can write
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where Qn(y(k1R̃)) = k1R̃yn−1(k1R̃)+(iωεziR̃−n)yn(k1R̃)
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, h
(2)
n (k1ρ) = jn(k1ρ) − iyn(k1ρ) =√

π
2k1ρH

(2)
n+1/2(k1ρ) are the spherical Hankel functions of the second kind; jn(k1ρ) =

√
π

2k1ρJn+1/2(k1ρ)

and yn(k1ρ) =
√

π
2k1ρNn+1/2(k1ρ) are the spherical Bessel and Neumann functions, respectively;

Jn+1/2(k1ρ) are Bessel functions; Nn+1/2(k1ρ) and H
(2)
n+1/2(k1ρ) are Neumann and Hankel functions

of the second kind and half-integral order [10]; k1 = k
√

ε1μ1 and k = 2π/λ are wave numbers in the
medium and free space, respectively; λ is free space wavelength; R̃ is the sphere radius; ω is the cir-
cular frequency. The impedance boundary conditions on the sphere Eθ = ziHϕ and Eϕ = −ziHθ are
equivalent to the requirement [8]

∂ (k1ρhn(ρ, ρ′))
∂ρ

= −iωεzi

(
k1ρhn(ρ, ρ′)

)∣∣∣∣
ρ=R̃

. (3)

Expressions (1) and (2) can be converted into the formulas [8] for the perfectly conducting sphere if
zi = 0.

Let us define a coordinate system related to the spherical antenna, as shown in Fig. 1, and assume
that the dipole is located at the point (ρ′ = R̃, θ′ = θ0; ϕ′ = ϕ0). Without losing the problem generality,
we use the model of a point harmonic oscillator with a constant complex amplitude of the electric current
J0 as a model of a monochromatic dipole radiator. The electromagnetic fields depend on time t as eiωt.

Figure 1. The problem geometry and accepted notations.

The components of the total radiation field can be found by using the following relations [8]:
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where �r is the radius vector of the observation point. Expressions (4) allow us to find electromagnetic
radiation fields at any distance from the antenna satisfying the relation ρ ≥ R̃.

If the external medium is lossless and ε1 is real, formulas (4) in the wave zone (ρ � λ) can be
simplified, since the terms proportional to 1/ρ2 can be omitted. In the wave zone, expressions (4) can
be easily transformed. If k1ρ → ∞ and |k1ρ| � n, the spherical Hankel functions of the second kind
have the well-known asymptotic representation [10]

h(2)
n (k1ρ) ≈ (i)n+1 e−ik1ρ

k1ρ
. (5)

If ε1 = μ1 = 1 and, hence, k1 = k, the wave zone magnetic field in the equatorial plane, ϕ′ = 0 and
θ′ = π/2, can be written in the form

Hρ (�r) = 0, Hϕ (�r) = 0,
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(6)

Here Z̄sp = zi
120π is surface impedance normalized to the resistance of free space. Since only one

component of the magnetic field is nonzero in Eq. (6), this formula can be conveniently used for
calculation of the radiation pattern of the spherical antenna. Of course, for the problem under
consideration, the magnetic field component Hθ(�r) in the wave zone is an alternative for a single
component electric field. Note that the summation in Eq. (6) was limited by a number of terms Nmax

that provided the determination of quantities with an error not exceeding 0.5%. For example, for spheres
with kR̃ = 1 the Nmax = 10...15 is sufficient, while for spheres with kR̃ = 10 the larger number of terms
should be taken into account, and Nmax = 50...60.

3. SURFACE IMPEDANCE OF A METAMATERIAL LAYER

The normalized surface impedance of a natural magneto-dielectric layer coating a perfectly conducting
plane is determined by the expression [11]

Z̄SW = i

√
μ

ε
tg(kdhd), (7)

where hd is the layer thickness, and ε = ε′ − iε′′ and μ = μ′ − iμ′′ are material parameters of the layer.
Formula (7) is transfered to Z̄SW ≈ ikμhd if the inequality |kdhd| 	 1 holds (kd = k

√
εμ). One can

see that the surface impedance of the electrically thin layer is inductive and does not depend on the
permittivity ε of the dielectric layer. The surface impedance of the metamaterial layer can be calculated
by the formula [12] Z̄SW = R̄SW + iX̄SW = ±i

√
μ
ε tg(kdhd), where the plus or minus signs are used if

ε′ > 0 or ε′ < 0. If μ′ < 0, the surface impedance is capacitive (X̄SW < 0). As an example, we now
calculate the surface impedance of the metamaterial LR-5I [13]. This metamaterial was developed to
provide resonant absorption of electromagnetic waves in the vicinity of the frequency f ≈ 2.8 GHz. The
metamaterial cell consists of four three-coil spirals made of nichrome wire. The wire diameter is 0.4 mm,
the spiral outer diameter 5.0 mm and spiral pitch 1.0 mm. The spirals are arranged in a special way on
0.2 mm polyurethane substrate as shown Fig. 2(a). Fig. 2(b) shows the plots R̄SW(f) and X̄SW(f) for the
LR-5I layer with a total thickness hd = 5.2 mm [12]. The plots were built by using formula (7) and the
experimental parameters of the metamaterial measured in the frequency range f = 2.7 ÷ 4.0 GHz [13].
As can be seen from Fig. 2(b), the imaginary part of the surface impedance becomes negative in some
frequency range. In the subsequent calculations, we assume that Z̄sp = Z̄SW for the metamaterial layer
on the sphere.
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(a) (b)

Figure 2. The metamaterial LR-5I: (a) fragment of metamaterial; (b) the plot R̄SW(f) and X̄SW(f).

4. SIMULATION RESULTS

Due to angular symmetry of formula (6), Fig. 3 shows the angular radiation pattern (RP), |H̄θ| as
function of the angular coordinate ϕ, only for the first two quadrants of the Cartesian plane (0 < ϕ < π).
The RPs, normalized to maximum values, are presented in Fig. 3 for spherical antennas with various
diffraction radii and impedances. As can be seen, if the sphere diffraction radius kR̃ increases, the
antenna RP becomes multilobed both for impedance and perfectly conducting spheres. The oscillations
of the radiation field amplitudes which define multilobed RP, are mainly observed in the geometric
shadow region (ϕ > π/2). These oscillations can be explained by interference of waves propagating
along the spherical scatterer surface along the meridians in the forward and backward directions [1, 8].
The larger is kR̃, the greater is the number of standing waves on the sphere surface and the more
side lobes are in the RP. Therefore, inductive surface impedance Z̄sp = 0.25i increases and capacitive
impedance Z̄sp = −0.25i decreases the numbers of the side lobes. One can also observe an insignificant
dependence of the RP shape upon the impedance for the spheres of small kR̃ ≤ 1.0 and large kR̃ ≥ 20.0
radii. Influence of the impedance on the RP shape becomes significant for the spheres of resonant
dimensions 2.0 ≤ kR̃ ≤ 10.0. Thus, if kR̃ = 10.0 and the sphere impedance varies in the range
−0.25i ≤ Z̄sp ≤ 0.25i, the main lobe maximum of the antenna RP can be scanned in the sector [70◦,
170◦] (Fig. 3(e)). However, one should take into account that the half power width of the antenna RP
varies almost four times at the ends of the impedance variation range.

The normalized angular RP for the sphere coated with the metamaterial layer is presented in Fig. 4
and Fig. 5, where the RP of a isolated dipole located in the center of the spherical coordinate system is
also shown for comparison.

The RP of the antenna with sphere of resonant dimensions covered with a layer of metamaterial
LR-5I at frequencies f = 2.9 GHz (Z̄sp = 0.35−0.18i) and f = 2.75 GHz (Z̄sp = 0.7+0.08i) are shown in
Fig. 4. As can be seen from Fig. 4(a), the coating layer can eliminate the effect of the spherical scatterer
with the diffraction radius kR̃ = 1.5 on the formation of the dipole radiation field if Z̄sp = 0.7 + 0.08i.
The coating significantly reduce this effect for kR̃ = 2.0 (Fig. 4(b)). Since surface currents induced on
the sphere by a dipole radiator are defined by the real part of the surface impedance, the influence of
spheres with dimensions kR̃ ≤ 1.5 on the antenna RP is reduced practically to zero if R̄sp = 0.7.

To ensure a similar effect for the large spheres, a further increase of the R̄sp is required. Fig. 5
shows the RP of the antenna with the diffraction radius kR̃ = 10.0 and the surface impedance Z̄sp = 1.0
and Z̄sp = 2.0. The simulation have shown that further increase of the impedance Z̄sp does not lead
to a significant change of the antenna RP and to expected convergence of curves 1 and 4. The effect
can be explained by two reasons. Firstly, by the dipole displacement from the center of the spherical
coordinate system, since it is placed on the sphere with the diffraction radius kR̃ = 10.0 as defined by
the problem formulation. Secondly, the RP becomes symmetric in the angular sector of the forward
half-space.
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(c) (d)
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Figure 3. The RP of the spherical antenna calculated for various values of the surface impedance: 1
— Z̄sp = 0.0; 2 — Z̄sp = −i0.25; 3 — Z̄sp = i0.25. (a) kR̃ = 1.0, (b) kR̃ = 2.0, (c) kR̃ = 3.0, (d)
kR̃ = 4.0, (e) kR̃ = 7.0, (f) kR̃ = 10.0.
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(a) (b)

Figure 4. The spherical antenna RP whose sphere is covered with the metamaterial layer: 1 — isolated
dipole; 2 — Z̄sp = 0.0; 3 — Z̄sp = 0.35 − 0.18i; 4 — Z̄sp = 0.7 + 0.08i. (a) kR̃ = 1.5, (b) kR̃ = 2.0.

Figure 5. The spherical antenna RP with the diffraction radius kR̃ = 10.0: 1 — isolated dipole; 2 —
Z̄sp = 0.0; 3 — Z̄sp = 1.0; 4 — Z̄sp = 2.0.

5. CONCLUSION

Analytical expressions for the simulation of radiation fields created by the radially oriented dipole
located on the impedance sphere have been derived. The simulation results have shown that the surface
impedance of the antenna with resonant spheres 2.0 ≤ kR̃ ≤ 10.0 influences significantly the antenna
RP in the wave zone. The inductive surface impedance increases the sphere effective radius, while
capacitive impedance reduces it. As one would expect, such an effect becomes insignificant for very
small or large spherical scatterers.

Numerical estimates of the impedance real part required to minimize the effect of spherical
scatterers of resonant dimensions upon the spherical antenna RP were obtained. Thus, for example,
the conditions R̄sp ≥ 0.4 and R̄sp ≥ 0.8 should be fulfilled for spheres whose dimensions are in the
ranges 0 < kR̃ ≤ 1.0 and 1.0 ≤ kR̃ ≤ 2.0, respectively. If the sphere dimensions are in the range
2.0 ≤ kR̃ ≤ 10.0, the impedance real part should satisfy the inequality R̄sp ≥ 2.0. The obtained results
can be directly used for development of antennas for mobile objects of spherical shape.
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