Vol. 71
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2017-10-25
Modeling of Multichannel Filter Using Defective Nano Photonic Crystal with Thue-Morse Structure
By
Progress In Electromagnetics Research Letters, Vol. 71, 61-67, 2017
Abstract
In this work, we study a multichannel filter by using one-dimensional photonic crystal (1DPC) based on Thue-Morse sequence (TMS). We use a dielectric defect layer between binary sequence cells with a TMS structure. First, we show transmission in terms of wavelength for the structure without defect layers. Then, we plot transmission in terms of wavelength for a different number of defect layer periods (N) in normal incidence. The analysis shows that there are two photonic bang gaps (PBG) in visible and infrared regions and two defect modes in each one for N = 1. Moreover, the number of defect modes is increased by increasing N. So, by tuning them, this structure can be used as a multi-channel filter within an optical wavelength range.
Citation
Hadis Azarshab, and Abdolrasoul Gharaati, "Modeling of Multichannel Filter Using Defective Nano Photonic Crystal with Thue-Morse Structure," Progress In Electromagnetics Research Letters, Vol. 71, 61-67, 2017.
doi:10.2528/PIERL17082607
References

1. Joannopoulos, J. D., R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light, Princeton University Press, 1995.

2. Skorobogatiy, M. and J. Yang, Fundamentals of Photonic Crystal Guiding, Cambridge University Press, 2009.

3. Sakoda, K., Optical Properties of Photonic Crystals, Springer-Verlag, 2001.
doi:10.1007/978-3-662-14324-7

4. Xu, B., G. Zheng, and Y. Wu, "Narrow band and angle insensitive filter based on one dimensional photonic crystal containing graded index defect," Mod. Phys. Lett. B, Vol. 29, 128-136, 2015.

5. Wu, C. J., Y. J. Lee, T. C. King, and W. K. Kuo, "A multichannel filter based on the finite plasma photonic crystal," Key Engineering Materials, Vol. 538, 297-300, 2013.
doi:10.4028/www.scientific.net/KEM.538.297

6. Chang, T. W. and C. J. W, "Analysis in a photonic crystal multichannel filter containing coupled defects," Optik, Vol. 124, 2028-2032, 2013.
doi:10.1016/j.ijleo.2012.06.023

7. Khodadadi, R., "Adjustable filters for optical communications systems based on one-dimensional photonic crystal structures," International Journal of Engineering Research and Application (IJERA), Vol. 2, 272-276, 2012.

8. He, J., P. Liu, Y. He, and Z. Hong, "Narrow bandpass tunable terahertz filter based on photonic crystal cavity," Optical Society of America, Vol. 51, 776-779, 2012.

9. Han, P. and H. Z.Wang, "Extension of omnidirectional reflection range in one-dimensional photonic crystals with staggered structure," J. Opt. Soc. Am. B, Vol. 20, 1996-2001, 2003.
doi:10.1364/JOSAB.20.001996

10. Usievich, B. A., A. M. Prokhorov, and V. A. Sychugov, "A photonic-crystal narrow-band optical filter," Laser Physics, Vol. 12, 898-902, 2002.

11. Awasthi, S. K. and S. P. Ojha, "Design of a tunable optical filter by using a one dimensional ternary photonic ban gap material," Progress In Electromanetics Research M, Vol. 4, 117-132, 2008.
doi:10.2528/PIERM08061302

12. Gharaati, A. and H. Azarshab, "Characterization of defect modes in one-dimensional ternary metallo-dielectric nanolayered photonic crystal," Progress In Electromanetics Research B, Vol. 37, 125-141, 2012.
doi:10.2528/PIERB11101410

13. Gharaati, A. and H. Azarshab, "Characterization of defect modes in one dimensional binary metallo-dielectric nanolayered photonic crystal," International Journal of Physics, Vol. 4, 149-162, 2011.

14. Srivastava, R., K. B. Thapa, S. Pati, and S. P. Ojha, "Omni-direction reflection in one dimensional photonic crystal," Progress In Electromanetics Research B, Vol. 7, 133-143, 2008.
doi:10.2528/PIERB08020601

15. Azarshab, H. and A. Gharaati, "Analysis of tuning channel filter based on ternary lossy defective metallo-dielectric nano photonic crystal," Progress In Electromanetics Research Letters, Vol. 68, 113-119, 2017.

16. Yeh, P., Optical Waves in Layered Media, Wiley, 2005.

17. Tang, K., Y. Xiang, and S.Wen, "Tunable transmission and defect mode in one-dimensional ternary left-handed photonic crystal," Proc. of SPIE, 60200S.1-60200S, 2005.

18. Skorobogatiy, M. and J. Yang, Fundamentals of Photonic Crystal Guiding, 132, Cambridge University Press, 2009.

19. Fan, S., P. R. Villeneuve, and J. D. Joannopoulos, "Large omnidirectional band gaps in metallodielectric photonic crystals," Phys. Rev. B, Vol. 54, 11245-11252, 1994.
doi:10.1103/PhysRevB.54.11245

20. Markos, P. and C. M. Soukoulis, "Wave propagation: From electrons to photonic crystals and left handed materials,", Princeton University Press, New Jersey, 2008.

21. Jackson, J. D., Classical Electrodynamics, 3rd Ed., 311, California University, 1999.

22. Wu, C. J., Y. H. Chung, and B. J. Syu, "Band gap extension in a one-dimensional ternary metal-dielectric photonic crystal," Progress In Electromanetics Research, Vol. 102, 81-93, 2010.
doi:10.2528/PIER10012004

23. Loschialpo, M. J. P. and J. Schelleng, "Photonic band gap structure and transmissivity of frequency-dependant metallic-dielectric systems," J. Appl. Phys., Vol. 88, 5785-5790, 2000.
doi:10.1063/1.1289045

24. Topasna, D. M. and G. A. Topasna, "Numerical modeling of thin film optical filters," Education and Training in Optics and Photonics (ETOP), 230-239, July 5, 2009.

25. Malaviya, S. K. U. and S. P. Ojha, "Enhancement of omnidirectional total-reflection wavelength ranges by using one-dimensional ternary photonic bandgap material," J. Opt. Soc. Am. B: Optical Physics, Vol. 23, 2566-2571, 2006.

26. Born, M. and E. Wolf, Principles of Optics, Cambridge, 1999.
doi:10.1017/CBO9781139644181

27. Saleh, B. E. A. and M. C. Teich, Fundamentals of Photonics, Wiley, 2007.