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Modeling of Multichannel Filter Using Defective Nano Photonic
Crystal with Thue-Morse Structure

Hadis Azarshab* and Abdolrasoul Gharaati

Abstract—In this work, we study a multichannel filter by using one-dimensional photonic crystal
(1DPC) based on Thue-Morse sequence (TMS). We use a dielectric defect layer between binary sequence
cells with a TMS structure. First, we show transmission in terms of wavelength for the structure without
defect layers. Then, we plot transmission in terms of wavelength for a different number of defect layer
periods (N) in normal incidence. The analysis shows that there are two photonic bang gaps (PBG) in
visible and infrared regions and two defect modes in each one for N = 1. Moreover, the number of defect
modes is increased by increasing N . So, by tuning them, this structure can be used as a multi-channel
filter within an optical wavelength range.

1. INTRODUCTION

When a light source includes light emitted in one direction to 1DPC, it causes transmission and reflection
from layers. Optical filters are devices that selectively transmit light of different wavelengths, while
blocking the remainder which is called PBG. PBGs have many applications in optical communications,
optoelectronics and optical devices [1–3]. A binary PC is a periodic structure including dielectric
elements with different refractive indices. There are a lot of researches in using dielectric and metals in
PC [4–15].

In this paper, we use transfer matrix method (TMM) to study the behavior of electromagnetic
waves inside PC [16–19]. We use this method to 1DPC containing dielectric materials with different
refractive indices.

In TMS, the dielectric layers are arranged in THS binary series. The THS structures are well
known for their high transmission efficiency which is useful for modeling a multi-channel filter. In this
structure by changing the number of defect layers, we can increase the number of resonant peaks very
much. Also, the structure of TMS with a defect layer leads to two BGs in both visible and infrared
regions, and more defect modes appear in both ranges [20].

2. THEORETICAL ANALYSIS

We use TMS for modeling our proposed filter. TMS is composed of dielectric layers (A and B) with
thicknesses d1, d2, and their indices of refraction are n1 and n2, respectively.

In TMS, we have series as follows
Sn+1 = SnS∗

n (1)
where S∗

n is the complement of Sn. Thus, for calculating S∗
n, we should replace A with B and vice versa.

So we have
S1 = AB, S∗

1 = BA (1a)
S2 = ABBA, S∗

2 = BAAB (1b)
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And in this way we have,
S5 = (ABBABAABBAABABBABAABBAABBABAAB)
S∗

5 = (BAABABBAABBABAABABBAABBAABABBA)
(1c)

According formula (1), for modeling filter with 6th generation of TMS we have,

S6 = S5S
∗
5 (2)

The defect PC is DN , where D is dielectric defect layers and N the number of defect layers. According
to formula (2) S6 of TMS is composed of S5 and S∗

5 , and in order to have a multi-channel filter, we add
the defect PC between two parts,

MT = S5D
NS∗

5 (3)

So the total characteristic matrix of the PC is given by [10, 21–27]

MT =
[

m11 m12

m21 m22

]
=

[
M11 M12

M21 M22

]N

= S5D
NS∗

5 . (4)

Then the transmission coefficient (t) is given by

t = 2p0/(m11 + m12p0)p0 + (m21 + m22)p0 (5)

where p0 = nc cos θ0. We can calculate the transmission [21–27].

T = |t|2 (6)

Also, the transmission coefficient r by using Equation (4) is given by

r =
(m11 + m12p0)p0 − (m21 + m22p0)
(m11 + m12p0)p0 + (m21 + m22p0)

(7)

So, we can calculate the reflection R = |r|2.

3. RESULTS AND DISCUSSION

In this paper, layers A and B are InP and Si3N4, and their refractive indices and thicknesses are
n1 = 3.16, d1 = 200 nm and n2 = 2, d2 = 400 nm. The substrate is assumed to be GaSb with refractive
index nC = 3.9. Also, the defect layer is taken to be GaSb whose index of refraction and thickness are
nD = 3.9 and dD = 600 nm, respectively. This structure is depicted in Figure 1.
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Figure 1. The structure of ternary PC with TMS.

In Figure 2, we show transmission in terms of wavelength in normal incidence without adding a
defect layer (Equation (3)). We see that there are two BGs without defect mode for N = 0 in visible
(between 50 nm to 520 nm) and infrared regions (between 70 nm and 730 nm). So, for modeling a
multi-channeled filter, we need to add defect layer D to the structure.
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(a) (b)

Figure 2. Transmission in terms of wavelength for S6 (Equation (3)) in normal incidence for (a) visible
and (b) infrared region.

(a) (b)

(c) (d)
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(e) (f)

Figure 3. Transmission in terms of wavelength for different N from 1 to 6 in normal incidence in
visible range.

(a) (b)

Figure 4. Transmission in terms of wavelength for (a) N = 10, (b) N = 20 in visible range.

Table 1. The number of defect modes and their wavelengths in 1DPC with THS structure
(C/S5D

NS∗
5/C) in both visible and infrared regions.

N
No. of

defect modes
Wavelengths (∼ nm)

in visible region
Wavelengths (∼ nm)

in infrared region
1 2 507 721
2 2 509 708
3 2 510 720
4 3 505 712–727
5 3 507 706–720
6 3 508 714–726
10 4 507 707–716–724
20 9 505–508–510 703–708–713–717–722–727



Progress In Electromagnetics Research Letters, Vol. 71, 2017 65

In Figure 3, we plot transmission in terms of wavelength for PC with a TMS structure (ABC) and
for different numbers of D (Equation (4)). We see that there is one defect mode in visible range, and
the number of defect modes is increased by increasing N . We give the wavelength of the defect modes
for different N in visible range in Table 1.

In Figure 4, we show transmission in terms of wavelength for higher N . As we see, the number of
defect modes increases a lot.

We show transmission in terms of wavelength for different N in infrared region in Figure 5. We see
that for the TMS structure in PC we have the other BG in infrared region whose defect modes increase
with increasing N . We give the wavelength of the defect modes for different N in infrared range in
Table 1.

(a) (b)

(c) (d)

(e) (f)

Figure 5. Transmission in terms of wavelength for different N in infrared range.
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(a) (b)

Figure 6. Transmission in terms of wavelength for (a) N = 10, (b) N = 20 in infrared range.

In Figure 6, we show transmission in terms of wavelength for higher N in infra-red region. As we
see, the number of defect modes increases a lot.

4. CONCLUSIONS

In this paper, we have shown that 1DPC with dielectric defect layers based on a TMS structure can act
as a multi-channel filter. First, we plot transmission in terms of wavelength for the structure without
defect layer (D) and show that there are two PBGs without defect mode. Then, we show transmission
in terms of wavelength for different numbers of defect layers (N) in both visible and infrared regions,
and we see that there are two defect modes for N = 1 in both regions. Also, the number of defect
modes increases by increasing N . So, we have more transmission peaks by increasing N . Our analysis
shows that 1DPC with TMS structure can be used as a multi-channel filter with high transmission and
can be tuned by increasing N .
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